首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A successful sol-gel process to encapsulate molybdenum di-silicide MoSi2 particles with a closed and thermally stable Al2O3 layer using aluminium tri-sec-butoxide as a precursor is presented. The processing conditions such as precursor selection and temperature were optimized through analysing the interaction of the MoSi2 particles with the sol. The application of the sol-gel based coating was followed by calcining the coated particles at temperatures between 900 and 1200?°C in Ar. The shell composition and the mechanical stability of the microcapsule were analysed by means of X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. Upon calcining at 1200?°C in Ar, the MoSi2 core remains intact as it is, covered by an α - alumina shell with a thickness of about 0.6?μm. The stability tests proved that the encapsulate particles are about five times more oxidation resistant than the uncoated MoSi2 particles.  相似文献   

2.
In the present study, mullite specimens and mullite/alumina composites are prepared by reaction sintering kaolinite and alumina at a temperature above 1000°C. The phase and microstructural evolution of the specimens and their mechanical properties are investigated. Primary mullite appears at a temperature around 1200°C. The alumina particles are inert to the formation of primary mullite. Alumina starts to react with the silica in glassy phase to form secondary mullite above 1300°C. The formation of secondary mullite decreases the amount of glassy phase. Furthermore, the addition of alumina reduces the size of mullite grains and their aspect ratio. The strength and toughness of the resulting mullite increase with the increase of alumina content; however, the mechanical properties of the mullite and mullite/alumina composites are lower than those of alumina for their relatively low density.  相似文献   

3.
The behavior of an oxide fiber at elevated temperatures was analyzed before and after thermal exposures. The material studied was a mullite fiber developed for high‐temperature applications, CeraFib 75. Heat treatments were performed at temperatures ranging from 1200°C to 1400°C for 25 hours. Quantitative high‐temperature X‐ray analysis and creep tests at 1200°C were carried out to analyze the effect of previous heat treatment on the thermal stability of the fibers. The as‐received fibers presented a metastable microstructure of mullite grains with traces of alumina. Starting at 1200°C, grain growth and phase transformations occurred, including the initial formation of mullite, followed by the dissociation of the previous alumina‐rich mullite phase. The observed transformations are continuous and occur until the mullite phase reaches a state near the stoichiometric 3/2 mullite. Only the fibers previously heat treated at 1400°C did not show further changes when exposed again to 1200°C. Overall, the heat treatments increased the fiber stability and creep resistance but reduced the tensile strength. Changes observed in the creep strain vs. time curves of the fibers were related to the observed microstructural transformations. Based on these results, the chemical composition of the stable mullite fiber is suggested.  相似文献   

4.
Polymeric carbon nitride, which was synthesized by polymerization of dicyandiamide at 500°C, was used as a nitridation reagent in the conversion of δ‐alumina (δ‐Al2O3) to aluminum nitride (AlN). The products obtained at various reaction temperatures were characterized by powder X‐ray diffraction, 27Al magic‐angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, Raman spectroscopy, and X‐ray photoelectron spectroscopy (XPS). δ‐Al2O3 began to convert to AlN at 900°C, which is the lowest temperature reported for the formation of AlN from Al2O3, and completely converted to AlN at 1400°C. The occurrence of reaction intermediates during nitridation was confirmed by 27Al MAS NMR and XPS. The change in Raman spectra with reaction temperatures indicated that lattice defects in AlN were reduced by calcining at higher reaction temperatures.  相似文献   

5.
MoSi2‐ and WSi2‐based electroconductive ceramic composites were fabricated using 40‐80 vol% fine‐ and coarse‐Al2O3, and ZrO2 particles (refractory oxides) after sintering in argon. Their chemical and thermal stability was tested between 1400°C‐1600°C for up to 48 hours. X‐ray diffraction analysis showed the formation of secondary 5‐3 metal silicide (Mo5Si3, W5Si3) and silica phases on the grain boundaries and surface. The fraction of the W5Si3 (11.4‐38.8 vol%) was significantly higher than that of the Mo5Si3 (3.3‐7.3 vol%) in the composites after annealing at 1400°C for 48 hours. The rates of grain growth in the composites (0.013‐0.023 μm/h) were highly decreased by a grain‐boundary pinning effect. This effect was relatively better with the addition of the coarse‐grained oxides due to their more homogeneous distribution throughout the microstructure. The 20–80 vol% MoSi2‐Al2O3 (fine‐grained) composite exhibited an electrical conductivity of 8.8 S/cm at 900°C. At the 60 vol% silicide content, MoSi2–Al2O3 (coarse‐grained) and WSi2–Al2O3 (fine‐grained) showed higher electrical conductivity (126‐128 S/cm) at 900°C. The density, porosity level, particle distribution, intrinsic conductivity of silicide phase, particle size, and fraction of the secondary 5‐3 silicide phase highly influenced their electrical properties.  相似文献   

6.
Oxidation resistant, thin, pinhole‐free, crystalline mullite coatings were deposited on zirconia and silicon carbide particles using atomic layer deposition (ALD). The composition of the films was confirmed with inductively coupled plasma optical emission spectroscopy (ICP OES), and the conformality and elemental dispersion of the films were characterized with transmission electron microscopy (TEM) and energy dispersive X‐ray spectroscopy (EDS), respectively. The films are deposited on the particle surface with a deposition rate of ~1 Å/cycle. The elemental concentration of aluminum relative to silicon in the film was determined to be 2.68:1 which agrees closely with the ratio of stable 3:2 mullite (2.88:1). A high‐temperature anneal for 5 hours at 1500°C was used to crystallize the films into the mullite phase. This work represents the first deposition of mullite films by ALD. The mullite and alumina‐coated particles were exposed to high‐temperature steam for 20 hours at 1000°C to assess the oxidation resistance of the films, which reduced the oxidation of silicon carbide by up to 62% relative to uncoated particles under these conditions. The activation energy of oxygen diffusion in the films was determined with density functional theory, and the computational results aligned well with the experimental outcomes.  相似文献   

7.
In this work, the oxidation‐induced crack healing of Al2O3 containing 20 vol.% of Ti2AlC MAX phase inclusions as healing particles was studied. The oxidation kinetics of the Ti2AlC particles having an average diameter of about 10 μm was studied via thermogravimetry and/or differential thermal analysis. Surface cracks of about 80 μm long and 0.5 μm wide were introduced into the composite by Vickers indentation. After annealing in air at high temperatures, the cracks were filled with stable oxides of Ti and Al as a result of the decomposition of the Ti2AlC particles. Crack healing was studied at 800, 900, and 1000°C for 0.25, 1, 4, and 16 hours, and the strength recovery was measured by 4‐point bending. Upon indentation, the bending strength of the samples dropped by about 50% from 402 ± 35 to 229 ± 14 MPa. This bending strength increased to about 90% of the undamaged material after annealing at 1000°C for just 15 minutes, while full strength was recovered after annealing for 1 hour. As the healing temperature was reduced to 900 and 800°C, the time required for full‐strength recovery increased to 4 and 16 hours, respectively. The initial bending strength and the fracture toughness of the composite material were found to be about 19% lower and 20% higher than monolithic alumina, respectively, making this material an attractive substitute for monolithic alumina used in high‐temperature applications.  相似文献   

8.
High emissivity coating plays a critical role in thermal protective system, which can radiate a large amount of aero-convective heat. Silica sol bonded MoSi2-SiC-Al2O3 (S-MSA) coating was proved to be promising for mullite fibrous insulation. However, the bonding mechanisms of the coating at elevated temperatures are not clear. In this work, the S-MSA coatings were heat-treated at temperatures from 600 °C to 1500 °C to reveal the bonding mechanisms at elevated temperatures. The S-MSA coatings go through a relatively stable stage (600 °C–1000 °C), a crystallization stage (1100 °C–1200 °C), and a densification stage (1300 °C–1500 °C) at ever increasing temperatures. Results show that both the contact damage resistance and the bonding strength of the calcined coatings exhibit a decrease followed by an increase at elevated calcination temperatures, with the inflection point at 1200 °C, corresponding to the transition temperature of the bonding mechanisms from 600 °C to 1500 °C.  相似文献   

9.
The thermal stability of alumino-silicate fibre (Nextel 720)/porous mullite matrix composites was investigated in the temperature range between 1300 and 1600°C. In the as-prepared state the fibres consist of mullite plus α-Al2O3, while the porous mullite matrix includes minor amounts of a SiO2-rich glass phase. Temperature-controlled reactions between the silica-rich glass phase of the matrix and α-Al2O3 at the rims of the fibres to form mullite have been observed. At the end of this process, virtually all glass phase of the matrix is consumed. Simultaneously, alumina-free layers about 1 μm thick are formed at the periphery of the fibres. The mullite forming process is initiated above about 1500°C under short time heat-treatment conditions (2 h) and at much lower temperature (1300°C) under long-term annealing (1000 h). Subsequent to annealing below the thermal threshold, the composite is damage tolerant and only minor strength degradation occurs. Higher annealing temperatures, however, drastically reduce damage tolerance of the composites, caused by reaction-induced gradually increasing fibre/matrix bonding. According to this study, the thermal stability of alumino silicate (Nextel 720) fibre/mullite matrix composites ranges between 1500°C in short-term and 1300°C in long-term heat-treatment conditions.  相似文献   

10.
Silica-doped alumina aerogels offer the potential alternative to the applications as thermal insulators, catalysis, or catalytic support at elevated temperatures. However, the production process of silica-doped alumina aerogels was complicated and time-consuming. We developed a one-step precursor-to-aerogel method of silica-doped alumina aerogels with high specific surface area and thermal stability. Compared to conventional methods, the developed method reduced time and solvent waste of alumina-based aerogels production. Here, we investigated the alumina aerogels doped with silica to stabilize γ-phase at higher temperatures. XRD, FTIR, TEM, TG-DSC, and BET analysis results showed that silica stabilized the γ-Al2O3 at 1200 °C. The stabilization mechanism analysis showed that silica addition could significantly hinder the contact among alumina particles and the formation of necks in the sintering process, thereby retarding the transition of γ–θ phase and maintaining the high specific surface area at elevated temperatures. Silica and alumina particles formed mullite at 1200 °C, which could suppress α-phase transformation. In addition, silica-doped alumina aerogels exhibited the high specific surface area of 311 m2/g at 1000 °C and 146 m2/g at 1200 °C when the silica content was in the range of 10.6–13.1 wt%.  相似文献   

11.
Molybdenum silicide/mullite composite having about 31 wt. % MoSi2 has been SHS-produced from a reactive blend composed of MoO3, SiO2, and Al. Additional amounts of silica were added to undergo mulHte formation reaction. The overall reaction involves both exothermic and endothermic ones. The endothermic mullite formation reaction is loaded onto the exothermic reaction of the reactive mixture. The effects of Al grain size (from 45 to 20 μm) and pre-heating temperature (from room temperature to 500°C) on the synthesis of the target composite were studied. Al grain size and preheating temperature were found to have decisive influence on the mullitization reaction. The sample containing 36-μm Al and ignited at 400°C was found to undergo complete mullitization reaction. The mechanism of the overall combustion reaction was postulated. In addition, oxidation resistance of this composite at 1100–1300°C in open atmosphere was determined.  相似文献   

12.
This paper investigates the effects of Iranian andalusite and short milling times on alumina–mullite–zirconia composites. Andalusite powder was added at 0, 2.5, 5, and 10 wt% to an alumina–zircon mixture and the raw materials were milled for 1 or 3 h. The sintering of samples was carried out at the temperatures of 1550°C, 1600°C, and 1650°C for 3 h. Microstructural changes, phase composition, physical properties, and mechanical strength of the sintered composites were characterized by scanning electron microscopy, X‐ray diffraction, density, and strength measurement tests. Results show that andalusite promoted the decomposition of zircon and accelerated the reaction sintering of alumina–zircon, which leads to the formation of much more mullite phase and improvements to the composites’ thermal shock resistance up to about 50%.  相似文献   

13.
《Ceramics International》2020,46(12):20129-20137
Colloidal silica as nanostructured binder for refractory castables has attracted many attentions in recent years. In the present study, phase composition, microstructure and reactivity evolution of silica gel at different heating conditions were investigated to find suitable system for colloidal silica application. The results showed that atmosphere and carbon slightly affected phase composition of the silica gel at elevated temperatures, and the crystalline phases were composed of major α-cristobalite and minor α-tridymite. The morphology and particle size of the silica gel were greatly affected by atmosphere and carbon during heating. The spherical nano-silica particles with sizes of 40–50 nm rapidly grew into macroscale rod-like particles with temperature increasing from 800-1000 °C to above 1200 °C in air, and sintering of silica particles was observed. However, the size and morphology of the spherical nano-silica particles retained at high temperature in a reducing atmosphere, and many well developed columnar mullite crystals and some SiC whiskers formed on heating silica gel, alumina fines and carbon at 1500 °C, which was due to carbon inclusions retarding the growth of nano-silica particles and the nano silica remained high reactivity at high temperature. Thus, colloidal silica was suitable for application in carbon-containing refractory castables.  相似文献   

14.
The electrical conductivity of a lab‐produced homogeneous mullite ceramic sintered at 1625°C for 10 h with low porosity was measured by impedance spectroscopy in the 0.01 Hz to 1MHz frequency range at temperatures between 300°C and 1400°C in air. The electrical conductivity of the mullite ceramic is low at 300°C (≈0.5 × 10?9 Scm?1), typical for a ceramic insulator. Up to ≈ 800°C, the conductivity only slightly increases (≈0.5 × 10?6 Scm?1 at 800°C) corresponding to a relatively low activation energy (0.68eV) of the process. Above ≈ 800°C, the temperature‐dependent increase in the electrical conductivity is higher (≈10?5 Scm?1 at 1400°C), which goes along with a higher activation energy (1.14 eV). The electrical conductivity of the mullite ceramic and its temperature‐dependence are compared with prior studies. The conductivity of polycrystalline mullite is found to lie in‐between those of the strong insulator α‐alumina and the excellent ion conductor Y‐doped zirconia. The electrical conductivity of the mullite ceramic in the low‐temperature field (< ≈800°C) is approximately one order of magnitude higher than that of the mullite single crystals. This difference is essentially attributed to electronic grain‐boundary conductivity in the polycrystalline ceramic material. The electronic grain‐boundary conductivity may be triggered by defects at grain boundaries. At high temperatures, above ≈ 800°C, and up to 1400°C gradually increasing ionic oxygen conductivity dominates.  相似文献   

15.
By taking advantage of the low sintering temperatures of the preceramic polymers, stereolithography printed mullite components derived from preceramic polymer precursor containing alumina particles can be sintered at low temperatures. However, due to their high specific surface, nano alumina particles are difficult to be dispersed into the photocurable polysiloxane. Herein, to prepare mullite slurry, a photosensitive hydroxysiloxane was employed as the preceramic polymer matrix while γ-Al2O3 nanoparticle was added as the active filler. The introduction of photocurable hydroxysiloxane not only improved the homogeneity and rheological properties of mullite slurry but also shorted the ionic diffusion distance of Si-ion and Al-ion during the sintering process. Therefore, 3D mullite preceramic precursor stereolithography printed from hydroxysiloxane-Al2O3 slurry was endowed with a low sintering temperature around 1400 °C. During the sintering process of preceramic precursor, sintering aid AlF3 can participate in the reaction and further promote the formulation of mullite grains.  相似文献   

16.
Aluminum phosphate (AlPO4) is a promising oxidation-resistant and weak interface for ceramic-matrix composites. In this research, AlPO4 coating was deposited on mullite fibers by an improved liquid-phase method based on electrostatic attraction. A cationic polyelectrolyte, polyethylenimine (PEI), was used for surface modification of mullite fibers. The formation process, phase evolution and microstructure of the coating were studied. The zeta potential of AlPO4 particles, PEI-adsorbed AlPO4 particles, and PEI-adsorbed mullite particles was characterized to find the proper pH value for improving electrostatic attraction. The obtained AlPO4 coating was porous and continuous, whose thickness could be controlled by multiple coating cycles. The relatively low calcination temperature (600 or 1000 °C) was a useful heat treatment method to develop bonding between coating and fiber as well as reduce the fiber strength degradation. The phase transformations of AlPO4 have little volume change, and cristobalite AlPO4 is thermal compatible with mullite. Therefore, the coating structure was preserved after calcining at 1200 °C. The technique is also applicable for other fibers contained mullite phase to fabricate high-performance AlPO4 coated mullite/mullite composites.  相似文献   

17.
A novel kind of dense MoSi2-SiC-Si coating was prepared on the surface of graphite substrate by slurry dipping and vapor silicon infiltration process. Mo-SiC-C precoating was fabricated via slurry dipping method, and then MoSi2-SiC-Si coating with dense structure consisting of Si, MoSi2 and SiC was obtained by vapor silicon infiltration process. The isothermal oxidation tests at temperatures from 800 to 1600 °C and TGA test from room temperature to 1500 °C were used to evaluate the oxidation resistance ability of the MoSi2-SiC-Si coating. The experimental results indicate that the prepared coating has good oxidation protection ability at a wide temperature range from room temperature to 1600 °C. Meanwhile, the oxidation of the coated samples is a weight gain process at temperatures from 800 to 1500 °C due to the formed SiO2 layer on the surface of coating. After oxidation for 220 h at 1600 °C, the weight loss of the coated sample was only 0.96%, which is considered to be the excessive consumption of the outer coating and the appearance of defects in the coating. Two layers can be observed in the coating after oxidation, namely, SiO2 layer and MoSi2-SiC-Si layer.  相似文献   

18.
Ceramic mullite–SiC nanocomposites were successfully produced at temperatures below 1500 °C by the polymer pyrolysis technique. An alumina-filled poly(methylsilsesquioxane) compound was prepared by mechanically mixing and cross-linking via a catalyst prior to pyrolysis. Heat treatment of warm pressed alumina/polymer bulk samples under the exclusion of oxygen (inert argon atmosphere) up to 1500 °C initiated crystallization of mullite even at pyrolysis temperatures as low as 1300 °C. The influence of the filler and of the pyrolysis temperature on the crystallization behavior of the materials has been investigated. Based on thermal analysis in combination with elemental analysis and X-ray powder diffraction studies four polymer mixtures differing in type and content of nano-alumina powders were examined. Nano-sized γ-Al2O3 powders functionalized at the surface by octylsilane groups proved to be more reactive towards the preceramic polymer leading to the formation of a larger weight fraction of mullite crystals at lower processing temperatures (1300 °C) as compared to native nano-γ-Al2O3 filler. Moreover, the functionalized nano-alumina particles offer an enhanced homogeneity of the distribution of alumina nano-particles in the starting polysiloxane system. In consequence, the received ceramic samples exhibited a nano-microstructure consisting of crystals of mullite with an average dimension in the range of 60–160 nm and silicon carbide crystals in the range of 1–8 nm.  相似文献   

19.
Electrodes consisting of coating of the Iridium oxide–Zirconium oxide (70%IrO2–30%ZrO2) binary oxide were formed on Ti substrates by thermal decomposition and annealing at 340°C–450°C. The effects of the annealing temperature on the structure, surface morphology, surface composition, and capacitive performance of the coatings were investigated using X‐ray diffraction analysis (XRD), transmission electron microscopy (TEM), scanning electron microscopy, X‐ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The XRD and TEM analyses showed that 360°C is greater than but very close to the crystallization temperature of the 70%IrO2–30%ZrO2 oxide coating. The 70%IrO2–30%ZrO2 oxide coatings annealed at this temperature consisted of an amorphous matrix containing a few IrO2 nanocrystalline particles (diameter of 1–2 nm). The degree of crystallinity of the coatings was approximately 13.2%. EIS analysis showed that the electrode annealed at 360°C exhibited the highest specific capacitance, which was much higher than that of the electrode annealed at 340°C (which had a purely amorphous structure) as well as those of the electrodes annealed at 380°C and 400°C (which had higher degrees of crystallinity). On the basis of the obtained results, the following conclusion can be drawn: oxide coatings prepared at temperatures slightly higher than the crystallization temperature of the oxide and containing conductive nanocrystalline particles exhibit the best capacitive performance. We suggest that this phenomenon can be explained by the fact that the electronic conductivity of the coating is greatly improved by the presence of the homogeneously distributed conductive nanocrystalline particles in the amorphous matrix. Furthermore, the protonic conductivity and loose atomic configuration of the amorphous structure of the electrode are not adversely affected by the annealing treatment.  相似文献   

20.
The extraction of metal from sulfide mineral is usually accompanied by the emission of sulfur-containing gas (e.g., SO2), which will cause serious pollution to the environment. In this work, a sulfur-emission free route for preparing ultrafine molybdenum disilicide (MoSi2) powder by silicothermic reduction of MoS2 with the desulfurization agent of lime was proposed. The internal MoS2-Si mixture is wrapped in an external desulfurization layer composed of lime. After the reaction is completed, the prepared MoSi2 can be easily separated from the desulfurization layer by using a non-chemical method. In addition, when the reaction temperature is higher than 1000°C, almost all S in MoS2 is transformed to sulfur-containing gas SiS, which can be fully captured by lime to generate CaS, Si, and CaSiO3. For the raw material with a MoS2:Si molar ratio of 1:4, after reacting at 1000, 1100, and 1200°C for 2 h, the average grain sizes of the obtained MoSi2 powder are approximately 100, 300, and 800 nm, respectively. Moreover, when the reaction time is prolonged from 2 to 6 h at 1000°C, the average grain size of the acquired MoSi2 powder is about 200 nm, and the residual sulfur content is about 0.12%. This work provides a new insight to extract metals or metal compounds from sulfide ores without releasing sulfur-containing gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号