共查询到20条相似文献,搜索用时 0 毫秒
1.
Xiaohua Zhang Yao Zhang Jie Zhang Bin Peng Zhenkun Xie Lixin Yuan Zhenxing Yue Longtu Li 《Journal of the American Ceramic Society》2014,97(10):3170-3176
Microwave dielectric properties and thermally stimulated depolarization currents (TSDC) of (1?x)Ba0.6Sr0.4La4Ti4O15–xTiO2 (x = 0, 0.01, 0.02, 0.05, and 0.1) ceramics were studied. X‐ray diffraction analysis indicates that the specimens show a hexagonal perovskite structure; however, with an increase of x to 0.1, TiO2?δ as a secondary phase can be detected in the ceramics. The variation of TiO2 content has a significant effect on the dielectric properties of (1?x)Ba0.6Sr0.4La4Ti4O15–xTiO2 at microwave frequency. The dielectric permittivity of ceramics increases from 44 to 49 with the increase of TiO2 content. The Qf value is in the range of 39 300–53 400 GHz. However, the temperature coefficient of resonant frequency (τf) changes from ?7.5 to–9.4 ppm/°C, and then turns to +3.9 ppm/°C. A near zero τf value can be obtained by tuning the content of TiO2 addition. TSDC was also employed to analysis the extrinsic loss mechanism. Utilizing a fixed polarization condition, the TSDC relaxation peaks are present, which are generated by oxygen vacancies. And the concentration of oxygen vacancies increases with the increase of TiO2 content. It can be concluded that the extrinsic dielectric loss is dominated by microstructure and oxygen vacancy defects. 相似文献
2.
Microwave Dielectric Properties and Thermally Stimulated Depolarization Currents of (1−x)Ba(Mg1/3Nb2/3)O3–xBaSnO3 Solid Solutions
下载免费PDF全文

Jie Zhang Yuanyuan Zhou Zhenxing Yue Xiaohua Zhang Longtu Li 《Journal of the American Ceramic Society》2015,98(12):3942-3947
Microwave dielectric ceramics of (1?x)Ba(Mg1/3Nb2/3)O3‐xBaSnO3 [(1?x)BMN‐xBS] with high quality factors was synthesized by the solid‐state reaction method. The effects of BaSnO3 additions (x = 0–0.2) on the sinterability, crystal structures, microwave dielectric properties, and microwave dielectric loss mechanisms of BMN were investigated systematically. The degree of 1:2 cation ordering was decreased with increasing Sn content and eventually faded away as x ≥ 0.1, where the low‐temperature relaxations disappeared coincidently through the thermally stimulated depolarization current technique. It was supposed to be the short‐range misplacements of the B‐site cations within the long‐range ordered structure. Meanwhile, the high‐temperature relaxations associated with the in‐grain oxygen vacancies were found in all the title compounds. Though the concentrations of oxygen vacancies of 0.8BMN‐0.2BS were higher than BMN, high Q × f values could also be obtained even in the absence of 1:2 cation ordering. Specifically, the excellent characteristics like εr = 29.02, Q × f = 90 000 GHz and τf = 6.3 ppm/°C were achieved in the specimens of x = 0.2 sintered at 1450°C. 相似文献
3.
Microwave Dielectric Properties and Thermally Stimulated Depolarization Currents of (1 − x)MgTiO3–xCa0.8Sr0.2TiO3 Ceramics
下载免费PDF全文

Jie Zhang Zhenxing Yue Yuanyuan Zhou Xiaohua Zhang Longtu Li 《Journal of the American Ceramic Society》2015,98(5):1548-1554
(1 ? x)MgTiO3–xCa0.8Sr0.2TiO3 (0.04 ≤ x ≤ 0.2, MT‐CST) composite ceramics were prepared by the conventional solid‐state reaction process. The phase composition, microwave dielectric properties, and microwave dielectric loss mechanisms were studied. Ca0.8Sr0.2TiO3 was employed as a τf compensator for MgTiO3, and they coexisted well without forming any secondary phases. Interestingly, significant dielectric relaxations associated with oxygen vacancy defects were observed in all the MT‐CST ceramics through the dielectric‐temperature spectra. Thermally simulated depolarization current was therefore conducted to obtain the defects associated with extrinsic dielectric loss mechanisms. The concentrations of both defect dipole and in‐grain oxygen vacancies increased with the increasing x, which could induce microwave dielectric loss consequently. It demonstrated that the behaviors of Q × f were basically influenced by phase composition and defects here. Temperature‐stable ceramics can be achieved at x = 0.06, where the microwave dielectric properties were εr = 21.19, Q × f = 110 900 GHz (f = 9.295 GHz), and τf = ?0.9 ppm/°C, respectively. 相似文献
4.
Jie Zhang Yuanyuan Zhou Bin Peng Zhenkun Xie Xiaohua Zhang Zhenxing Yue 《Journal of the American Ceramic Society》2014,97(11):3537-3543
A new low‐fired dielectric material derived from CaMg0.9Zn0.1Si2O6 (CMZS) ceramics with high quality factor was synthesized by solid‐state reaction method. The effects of MgF2 addition on the sinterability, phase composition, crystal defects, and microwave dielectric properties of CMZS were investigated. MgF2 was proved not only to lower the sintering temperature to ~1000°C but also to remarkably modify the microwave dielectric properties of CMZS. In addition to the main diopside phase, forsterite was identified as the secondary phase in all MgF2‐doped samples. Dielectric temperature spectra showed that MgF2 induced significant dielectric relaxations associated with oxygen vacancy defects to CMZS. Thermally stimulated depolarization current was, therefore, considered to obtain the defects associated with extrinsic microwave dielectric loss mechanisms. Compared with undoped CMZS, although the concentration of oxygen vacancies showed a notable increase in the 5 wt% MgF2‐doped CMZS, the Q×f values were still improved. Here, with proper MgF2‐doping, it demonstrated that the microwave dielectric loss was basically influenced by phase composition. The excellent characteristics of εr = 7.78, Q×f = 151 800 GHz, and τf = ?26.40 ppm/°C were achieved from the 5 wt% MgF2‐doped specimens sintered at 1000°C. 相似文献
5.
Pian P. Ma Lei Yi Xiao Q. Liu Lei Li Xiang M. Chen 《Journal of the American Ceramic Society》2013,96(11):3417-3424
Effects of postdensification annealing upon microstructures and microwave dielectric characteristics in Ba((Co0.6?x/2Zn0.4?x/2Mgx)1/3Nb2/3)O3 (x = 0, 0.1, 0.2, and 0.3) complex perovskite ceramics have been investigated. Long‐time annealing at temperatures below the order–disorder transition temperature enhances the cation ordering degree and promotes the ordering domain growth. The most significant improvement of Qf value is obtained together with the suppressed temperature coefficient of resonant frequency in the samples annealed at 1400°C for 12 h, while the dielectric constant decreases slightly. The Qf value of ceramics annealed at 1400°C mainly attributes to the enhanced cation ordering degree, because their low‐energy domain boundaries are not detrimental to the Qf value. As the annealing temperature increases close to the transition temperature, coarse ordering domains with high‐energy boundaries are formed, and then the Qf value steadily decreases because of the inferior domain structure, even the cation ordering degree increases. The microwave dielectric characteristics of Ba((Co0.6?x/2Zn0.4?x/2Mgx)1/3Nb2/3)O3 ceramics are affected by the common function of ordering degree and domain structure. The best combination of microwave dielectric characteristics is obtained in the composition of x = 0.3 after annealing at 1400°C for 12 h: εr = 33.2, Qf = 117 200 GHz, and τf = 8.6 ppm/°C. 相似文献
6.
7.
Xiaohua Sun Ying Yang Qiaoling Zhang Shuang Hou Caihua Huang Zongzhi Hu Jun Zou Meiya Li Tianyou Peng Xing‐zhong Zhao 《Journal of the American Ceramic Society》2013,96(3):820-824
xNd(Zn1/2Ti1/2)O3–(1?x)Ba0.6Sr0.4TiO3 (xNZT–BST) thin films were fabricated on Pt/Ti/SiO2/Si substrates by sol–gel method with x = 0, 3%, 6%, and 10%. The structures, surface morphology, dielectric and ferroelectric properties, and thermal stability of xNZT–BST thin films were investigated as a function of NZT content. It was observed that the introduction of NZT into BST decreased grain size, dielectric constant, ferroelectricity, tunability, and significantly improved dielectric loss and dielectric thermal stability. The corresponding reasons were discussed. The 10%NZT–BST thin film exhibited the least dielectric loss of 0.005 and the lowest temperature coefficient of permittivity (TCP) of 3.2 × 10?3/°C. In addition, the figure of merit (FOM) of xNZT–BST (x = 3%, 6%, and 10%) films was higher than that of pure BST film. Our results showed that the introduction of appropriate NZT into BST could modify the dielectric quality of BST thin films with good thermal stability. Especially for the 3%NZT–BST thin film, it showed the highest FOM of 33.58 for its appropriate tunability of 32.87% and low dielectric loss of 0.0098. 相似文献
8.
用凝胶预碳化处理工艺的溶胶-凝胶法制备了晶粒粒径小且分散性能较好的钙锶铋钛(Ca0.4Sr0.6Bi4Ti4O15)纳米晶粉体.借助差热-热重分析仪、X射线衍射仪和扫描电镜等分别确定凝胶的预碳化处理温度,研究了预碳化处理工艺对粉体的物相结构、粉体的微观形貌以及分散性能的影响,并分析讨论了预碳化机理.结果表明:在300℃对前驱体凝胶进行预碳化处理增强了粉体的分散性,降低粉体的粒度,提高粉体的均匀性.凝胶预碳化处理工艺并未对粉体的物相结构造成影响.经过预碳化处理制备的粉体的颗粒尺寸集中在100nm左右;未经预碳化处理的粉体的颗粒尺寸为100nm~1 μm.凝胶预碳化处理后,高吸附活性的有机碳包覆在前驱体的表面是有效减少粉体团聚的原因. 相似文献
9.
Li He Di Zhou Feng Xiang Panpan Chang Yong Li Hong Wang 《Journal of the American Ceramic Society》2013,96(10):3027-3030
In this study, a novel spinel solid solution ceramic of 0.4LiFe5O8–0.6Li2MgTi3O8 (0.4LFO–0.6LMT) has been developed and investigated. It is found that the 40 mol% LiFe5O8 and 60 mol% Li2MgTi3O8 are fully soluble in each other and a disordered spinel phase is formed. The ceramic sample sintered at 1050°C/2 h exhibits both good magnetic and dielectric properties in the frequency range 1–10 MHz, with a permeability between 29.9~14.1 and magnetic loss tangent between 0.12~0.67, permittivity between 16.92~16.94 and dielectric loss tangent between 5.9 × 10?3–2.3 × 10?2. The sample also has good microwave dielectric properties with a relative permittivity of 16.1, a high quality factor (Q × f) ~28 500 GHz (at 7.8 GHz). Furthermore, 3 wt% H3BO3–CuO (BCu) addition can effectively lower the sintering temperature to 925°C and does not degrade the magnetodielectric properties. The chemical compatibility with silver electrode indicates that this kind of ceramics is a good candidate for the low‐temperature cofired ceramic (LTCC) application. 相似文献
10.
The structure stabilities of double perovskite ceramics‐ (1 ? x) Ba(Mg1/2W1/2)O3 + xBa(Y2/3W1/3)O3 (0.01 ≤ x ≤ 0.4) have been studied by X‐ray powder diffraction (XRD), scanning electron microscopy (SEM), and Raman spectrometry in this study. The microwave dielectric properties of the ceramics were studied with a network analyzer at the frequency of about 8–11 GHz. The results showed that all the compounds exhibited face‐centered cubic perovskite structure. Part of Y3+ and W6+ cations occupied 4a‐site and the remaining Y3+ and Mg2+ distributed over 4b‐site, respectively, and kept the B‐site ratio 1:1 ordered. Local ordering of Y3+/Mg2+ on 4b‐site and Y3+/W6+ cations on 4a‐site within the short‐range scale could be observed with increasing Y‐doping content. The decomposition of the double perovskite compound at high temperature was successfully suppressed by doping with Y on B‐site. However, Ba2Y0.667WO6 impurity phase appeared when x > 0.1. The optimized dielectric permittivity increased with the increase in Y doping. The optimized Q × f value was remarkably improved with small amount of Y doping (x ≤ 0.02) and reached a maximum value of about 160 000 GHz at x = 0.02 composition. Further increasing in Y doping led to the decrease in Q × f value. All compositions exhibited negative τf values. The absolute value of τf decreased with increasing Y‐doping content. Excellent combined microwave dielectric properties with εr = 20, Q × f = 160 000 GHz, and τf = ?21 ppm/°C could be obtained for x = 0.02 composition. 相似文献
11.
The properties of relaxor ceramics in the compositional series (1?x)K0.5Bi0.5TiO3–xBa(Ti0.8Zr0.2)O3 have been investigated. Values of Tm, the temperature of maximum relative permittivity, decreased from 380°C at x = 0.0 to below room temperature for x > 0.7. Compositions x = 0.1 and 0.2 were piezoelectric and ferroelectric. The maximum value of d33 piezoelectric charge coefficient, 130 pC/N, and strain, 0.14%, occurred at x = 0.1. Piezoelectric properties of x = 0.1 were retained after thermal cycling from room temperature to 220°C, consistent with results from high‐temperature X‐ray diffraction indicating a transition to single‐phase cubic at ~300°C. 相似文献
12.
Ceramics in the solid solution system, (1 ? x)Ba0.8Ca0.2TiO3–xBi(Mg0.5Ti0.5)O3, were prepared by a conventional mixed oxide route. Single‐phase perovskite‐type X‐ray diffraction patterns were observed for compositions x < 0.6. A change from tetragonal to single‐phase cubic X‐ray patterns occurred at x ≥ 0.1. Dielectric measurements indicated relaxor behavior for x ≥ 0.1. Increasing the Bi(Mg0.5Ti0.5)O3 content improved the temperature sensitivity of relative permittivity ?r at high temperatures. At x = 0.5, a near‐plateau relative permittivity, 835 ± 40, extended across the temperature range, 65°C–550°C; the permittivity increased at x = 0.6 to 2170 ± 100 for temperatures 160°C–400°C (1 kHz). The corresponding loss tangent, tanδ, was ≤0.025 for temperatures between 100°C and 430°C for composition x = 0.5; at x = 0.6, losses increased sharply at >300°C. Comparisons of dielectric properties with other materials proposed for high‐temperature capacitor applications suggest that (1 ? x)Ba0.8Ca0.2TiO3–xBi(Mg0.5Ti0.5)O3 ceramics are a promising base material for further development. 相似文献
13.
Yang Lv Ruzhong Zuo Ying Cheng Chen Zhang 《Journal of the American Ceramic Society》2013,96(12):3862-3867
The novel low‐temperature sinterable (1 ? x)Ba3(VO4)2–xLiMg0.9Zn0.1PO4 microwave dielectric ceramics were prepared by cofiring the mixtures of pure‐phase Ba3(VO4)2 and LiMg0.9Zn0.1PO4. The phase structure and grain morphology of the ceramics were evaluated using X‐ray diffraction, Raman spectra, and scanning electron microscopy. The results indicated that Ba3(VO4)2 and LiMg0.9Zn0.1PO4 phases can well coexist in the sintered body. Nevertheless, a small amount of LiZnPO4 and some vanadate phases with low melting points were observed, which not only can influence the microwave dielectric properties of the ceramic but also can obviously improve the densification behavior at a relatively low sintering temperature. The near‐zero temperature coefficients of the resonant frequency (τf) could be achieved by adjusting the relative content of the two phases owing to their opposite τf values and simultaneously a desirable quality factor Q × f value can be maintained. No chemical reaction between the matrix ceramic phase and Ag took place after sintering at 800°C for 4 h. The ceramics with 45 vol% LiMg0.9Zn0.1PO4 can be well sintered at only 800°C and exhibit excellent microwave dielectric properties of εr ~ 10, Q × f ~ 64 500 GHz, and τf ~ ?2.1 ppm/°C, thus showing a great potential as a low‐permittivity low‐temperature cofired microwave dielectric material. 相似文献
14.
Hetuo Chen Zhewei Zhang Zhe Xiong Bin Tang Ying Yuan Shuren Zhang 《Journal of the American Ceramic Society》2017,100(9):4058-4065
This study presents the microwave dielectric properties calculation of (1‐x)Ba3.75Nd9.5Cr0.25Nb0.25Ti17.5O54–xNdAlO3 ceramics where x denotes the volume molar fraction. From X‐ray diffraction results, the solid solution limit is calculated to be about 0.76, where it forms a single BaNd2Ti4O12 phase in Region I (0≤x<0.76), and both BaNd2Ti4O12 and NdAlO3 coexist in Region II (0.76≤x<1). The solid solution limit is confirmed by independently calculating it from the dielectric constant data. There is less than 4% deviation between the measured dielectric constant (εr) and the one calculated from the Maxwell‐Wagner formula. The total quality factor (Q) remains almost constant in Region I and increases rapidly with the volume molar fraction of NdAlO3 in Region II. The measured Q×f, where f is the resonant frequency, is also consistent with the calculated value in both regions. The temperature coefficient at the resonant frequency is ?1.4 ppm/°C, which agrees well with the calculated value of 0 ppm/°C. In addition, we observed a close correlation between the bulk density and the phase evolution. 相似文献
15.
In Situ Foaming of Porous (La0.6Sr0.4)0.98 (Co0.2 Fe0.8) O3−δ (LSCF) Cathodes for Solid Oxide Fuel Cell Applications
下载免费PDF全文

Sodith Gandavarapu Edward Sabolsky Katarzyna Sabolsky Kirk Gerdes 《International Journal of Applied Ceramic Technology》2015,12(1):199-211
A binder system containing polyurethane precursors was used to in situ foam (direct foam) a (La0.6Sr0.4)0.98 (Co0.2 Fe0.8) O3?δ (LSCF) composition for solid oxide fuel cell (SOFC) cathode applications. The relation between in situ foaming parameters on the final microstructure and electrochemical properties was characterized by microscopy and electrochemical impedance spectroscopy (EIS), respectively. The optimal porous cathode architecture was formed with a 70 vol% solids loading within a polymer precursor composition with a volume ratio of 8:4:1 (isocyanate: PEG: surfactant) in a terpineol‐based ink vehicle. The resultant microstructure displayed a broad pore size distribution with highly elongated pore structure. 相似文献
16.
Structure Evolution and Enhanced Microwave Dielectric Characteristics of (Sr1−xCax)La2Al2O7 Ceramics
Lei Yi Lei Li Xiao Qiang Liu Xiang Ming Chen 《Journal of the American Ceramic Society》2014,97(11):3531-3536
(Sr1?xCax)La2Al2O7 (0.1 ≤ x ≤ 0.5) ceramics were prepared by a standard solid‐state reaction method. Their densification behavior and microwave dielectric properties were investigated together with the structural evolution. X‐ray diffraction analysis indicated that the major phase of Ruddlesden–Popper structure with n = 2 was obtained for all the compositions investigated here. Partial Ca substitution improved the sintering behavior of SrLa2Al2O7 ceramics. More importantly, microwave dielectric characteristics were enhanced in (Sr1?xCax)La2Al2O7 ceramics with compositions of x = 0.1~0.3. The stacking fault was confirmed by TEM observation in the present ceramics, and the microwave dielectric loss was influenced by it. The best combination of microwave dielectric characteristics was achieved for the composition of x = 0.1: εr = 19.9, Qf = 135 400 GHz and τf = ?18.5 ppm/°C. 相似文献
17.
Sr(Ga0.5Nb0.5)1−xTixO3 Low‐Loss Microwave Dielectric Ceramics with Medium Dielectric Constant
下载免费PDF全文

Pian Pian Ma Xiao Qiang Liu Fa Qiang Zhang Juan Juan Xing Xiang Ming Chen 《Journal of the American Ceramic Society》2015,98(8):2534-2540
The microwave dielectric properties of Sr(Ga0.5Nb0.5)1?xTixO3 (x = 0, 0.1, 0.2 and 0.3) ceramics have been investigated together with their microstructures. Single‐phase solid solutions are achieved in this series of ceramics. The ordering features are comprehensively analyzed by transmission electron microscopy and Raman spectroscopy. Local 1:1 ordering in B‐site leads to a double‐cubic structure with space group , while Ti substitution disrupts this 1:1 ordering between Ga and Nb, and the metastable ordering between Ti and (Ga + Nb) is speculated to form due to their large size difference. The dielectric constant and temperature coefficient of resonant frequency increase nonlinearly as x increases, while the Qf value decreases gradually. The variation trend of Qf value is mainly attributed to the intrinsic loss because of the increasing vibrational anharmonicity by Ti substitution. The ordering transition from short coherence, long‐range ordering to short‐range ordering with increasing Ti content has an agreeable and weak effect on the Qf value. The best combination of microwave dielectric properties is achieved for the composition of x = 0.3: εr = 46.6, Qf = 42 200 GHz and τf = 5.0 ppm/°C. 相似文献
18.
19.
Impedance Spectroscopy,Broadband, and Microwave Dielectric Properties of Mechanically Alloyed Ba5Nb4O15 Ceramics
下载免费PDF全文

Chikkala Anil Kumar Sylvester Josephine Dobbidi Pamu 《International Journal of Applied Ceramic Technology》2016,13(3):554-563
Ba5Nb4O15 (BNO) ceramics were synthesized by the mechanical alloying method. The transmission electron microscope images of BNO powders revealed rod‐shaped grains. Mechanically alloyed BNO exhibited maximum density of 97.3% and is explained on the basis of Herring's scaling law. Both the dielectric constant and loss tangent show a stable response up to 0.2 GHz. Further, the dielectric response of BNO ceramics measured above 350°C shows relaxation behavior and is explained using Havriliak–Negami equation. The obtained stable dielectric response of BNO is suitable for type I capacitor and dielectric resonator applications. 相似文献
20.
Resistivity Enhancement and Transport Mechanisms in (1 − x)BaTiO3–xBi(Zn1/2Ti1/2)O3 and (1 − x)SrTiO3–xBi(Zn1/2Ti1/2)O3
下载免费PDF全文

Ceramics of composition (1?x)BaTiO3–xBi(Zn1/2Ti1/2)O3 (BT‐BZT) were prepared by solid‐state synthesis; they have been shown to exhibit excellent properties suited for high‐temperature dielectric applications. The X‐ray diffraction data showed a single‐phase perovskite structure for all the compositions prepared (x ≤ 0.1 BZT). The compositions with less than 0.075 BZT exhibited tetragonal symmetry at room temperature and pseudo‐cubic symmetry above it. Most notably, a significant improvement in insulation properties was measured with the addition of BZT. Both low‐field AC impedance and high‐field direct DC measurements indicated an increase in resistivity of at least two orders of magnitude at 400°C with the addition of just 0.03 BZT (~107 Ω‐cm) into the solid solution as compared to pure BT (~105 Ω‐cm). This effect was also evident in dielectric loss data, which remained low at higher temperatures as the BZT content increased. In conjunction with band gap measurements, it was also concluded that the conduction mechanism transitioned from extrinsic for pure BT to intrinsic for 0.075 BZT suggesting a change in the fundamental defect equilibrium conditions. It was also shown that this improvement in insulation properties was not limited to BT‐BZT, but could also be observed in the paraelectric SrTiO3–BZT system. 相似文献