首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了Er3 替代Bi3 对Bi2(Zn1/3Nb2/3)2O7系介质材料结构和性能的影响,并借助X射线、扫描电镜、Agilent4284测试仪对其相结构和介电性能进行分析.研究结果表明:经Er3 替代的BZN陶瓷样品烧结温度升高(从960℃升高到1000℃);随着Er3 替代量的增加,Bi2(Zn1/3Nb2/3)2O7系介质材料的晶粒尺寸、介电常数、介电损耗都有所变化;当替代量x=0.1时,介电性能最佳,介电常数为78.7165,介电损耗为0.00134.  相似文献   

2.
贾宝祥 《河北化工》2011,34(5):60-62
研究了Sb3+替代Bi3+对Bi2O3-ZnO-Nb2O5(BZN)系介质材料结构和性能的影响,并借助X射线、扫描电镜、LCR4284测试仪对其相结构和介电性能进行分析。研究结果表明,经Sb3+替代的BZN陶瓷样品成瓷温度仍为1 000℃;随着Sb3+替代量的增加,Bi2O3-ZnO-Nb2O5系介质材料的晶粒尺寸、介电常数、介电损耗都有所变化。当替代量x=0.4时,介电性能最佳,介电常数为184,介电损耗为0.001。  相似文献   

3.
The (1?x)BaTiO3?xBi(Zn2/3Nb1/3)O3 (x=0.10‐0.25) ceramics were fabricated via solid‐state reactions. Temperature‐dependent polarization measurement reveals that with the temperature lowering, the remnant polarization increases till a maximum value before it decreases, showing a reentrant phenomenon. Absence of apparent switching current peaks in the current density as a function of electric field should indicate the lack of a ferroelectric transition, which is further verified by the consistent macroscopic phase structure from the Raman spectra. An anomalous peak in the full width at half maximum of a deconvoluted mode at ~515 cm?1 suggests the entering of a more disordered state of dipolar dynamics, which may be originated from the competition between the freezing of polar nanoregions and the random interacting fields.  相似文献   

4.
A series of regular shaped Pb(Zn1/3Nb2/3)O3‐based ternary ferroelectric single crystals (1 ? x)Pb(In1/2Nb1/2)O3–0.33Pb(Zn1/3Nb2/3)O3xPbTiO3 (PIN–PZN–PT) have been grown by means of the top‐seeded solution growth method that prevented pyrochlore phase and promoted [001] or [111] growth. The nucleation and crystallization behavior of the Pb(Zn1/3Nb2/3)O3‐based ferroelectric single crystals differed from other relaxor‐based ferroelectric single crystals was discovered. Di‐/piezo‐/ferro‐/pyroelectric properties were characterized systematically. The PIN–PZN–PT single crystals showed large coercive fields Ec, high Curie temperature TC and high pyroelectric coefficient P, presenting similar performance but better thermal stability compared with the PZN–PT single crystals, and making it a promising material for transducers and IR detectors in a wider temperature range.  相似文献   

5.
The (1?x)BaTiO3xBi(Zn2/3Nb1/3)O3 (x = 0.01–0.30) ceramics were synthesized by solid‐state reactions. The solubility limit was determined to be x = 0.20. A systematic structural transition from a tetragonal phase (x ≤ 0.034), to a mixture of tetragonal and rhombohedral phases (0.038 ≤ x ≤ 0.20), and finally to a pseudocubic phase (x ≥ 0.22) at room temperature was identified. Dielectric measurement revealed a ferroelectric (x ≤ 0.04) to relaxor (x ≥ 0.06) transition with permittivity peak broadening and flattening, which was further verified by Raman spectroscopy and differential scanning calorimetry (DSC). Activation energies obtained from the Vogel–Fulcher model displayed an increasing trend from ~0.03 eV for x ~ 0.05, to unusually high values (>0.20 eV) for the compositions with x ≥ 0.15. With the increase in Bi(Zn2/3Nb1/3)O3 content, the polarization hysteresis demonstrated a tendency from high nonlinearity to sublinearity coupled with the reduction in remnant polarization and coervice field. The deconvolution of the irreversible/reversible polarization contribution was enabled by first‐order reversal curve distributions, which indicates that the decreasing polarization nonlinearity with the increase in Bi(Zn2/3Nb1/3)O3 concentration could be related with the change from the ferroelectric domain and domain wall contributions to the weakly coupled relaxor behaviors.  相似文献   

6.
Microwave resonator measurements were performed on high‐performance microwave ceramics Ba(Zn1/3Ta2/3)O3 (BZT) and Ba(Zn1/3Nb2/3)O3 (BZN) containing additives commonly used by commercial manufacturers (i.e., Co, Mn, and Ni). We find that the loss tangent, even in ambient magnetic fields, is dominated by electron paramagnetic resonance (EPR) absorption by exchange‐coupled 3d electrons in transition metal clusters at cryogenic temperatures. The large orbital angular momentum in Co2+ and Ni2+ ions of L = 3 causes strong anisotropic‐broadened dipolar interactions that extend EPR losses to zero applied field. This effect is greatest in BZN with Co concentrations greater than 0.5 mol%, dominating the losses at liquid nitrogen temperatures (77 K) and below. In samples containing Mn2+ ions with L = 0, the dipolar interactions and associated EPR losses in ambient fields are smaller. We show the magnetic‐field‐dependent changes in the EPR losses (i.e., tan δ) and magnetic reactive response (i.e., μr) are from the same mechanism, as they follow the Kramers–Kronig relation. Finally, we note that these materials can make ultra‐high Q passive microwave devices with externally controlled transfer functions, as the quality factor (Q) of the composition Ba(Co1/15Zn4/15Nb2/3)O3 at 77 K can be tuned from 1 100 to 12 000 at 10 GHz by applying practical magnetic fields.  相似文献   

7.
The coexistence of Li2MoO4 (LMO) and Ni0.5Zn0.5Fe2O4 (NZO) has been proven and their low‐temperature‐sintered magneto‐dielectric composites (1?x)LMO–xNZO (volume fraction factor x = 0.1, 0.3, 0.5, 0.7) were prepared by the conventional solid‐state reaction method and were sintered below 700°C. It is found that the optimal sample (x = 0.5) has good and relatively stable magneto‐dielectric performance in the frequency range from 10 MHz to 1 GHz with permittivity between 7.14 and 6.84, dielectric loss tangent between 0.09 and 0.02, and permeability between 5.23 and 3.30, magnetic loss tangent between 0.06 and 0.65, respectively. Furthermore, the verified chemical compatibility with silver indicates that the LMO–NZO ceramics are potential for low‐temperature cofired ceramic application and their multifunctional magneto‐dielectric properties also make them for potential applications in electronic devices.  相似文献   

8.
The structure, microwave dielectric properties, and low‐temperature sintering behavior of acceptor/donor codoped Li2TiO3 ceramics [Li2Ti1?x(Al0.5Nb0.5)xO3, x = 0–0.3] were investigated systematically. The x‐ray diffraction confirmed that a single‐phase solid solution remained within 0 < x ≤ 0.2 and secondary phases started to appear as x > 0.2, accompanied by an order–disorder phase transition in the whole range. Scanning electron microscopy observation indicated that the complex substitution of Al3+ and Nb5+ produced a significant effect on the microstructural morphology. Both microcrack healing and grain growth contributed to the obviously enhanced Q×f values. By comparison, the decrease of εr and τf values was ascribed to the ionic polarizability and the cell volume, respectively. Excellent microwave dielectric properties of εr ~ 21.2, Q×f ~ 181 800 GHz and τf  ~ 12.8 ppm/°C were achieved in the x = 0.15 sample when sintered at 1150°C. After 1.5 mol% BaCu(B2O5) additive was introduced, it could be well sintered at 950°C and exhibited good microwave dielectric properties of εr ~ 20.4, Q×f ~ 53 290 GHz and τf ~ 3.6 ppm/°C as well. The cofiring test of the low‐sintering sample with Ag powder proved its good chemical stability during high temperature, which enables it to be a promising middle‐permittivity candidate material for the applications of low‐temperature cofired ceramics.  相似文献   

9.
添加剂对Ba(Zn1/3Nb2/3)O3-Sr(Zn1/3Nb2/3)O3陶瓷介电性能的影响   总被引:1,自引:0,他引:1  
研究了MnCO3,BaZrO3对0.35Ba(Zn1/3Nb2/3)O3(BZN)-0.65Sr(Zn1/3Nb2/3)O3(SZN)陶瓷介电性能的影响.研究表明:添加MnCO3,BaZrO3时,对陶瓷的烧结均起促进作用,增大介电常数.加入1%(质量分数)的MnCO3可使陶瓷具有较小的介质损耗,同时MnCO3对陶瓷的介电常数温度系数具有正向调整作用.加入BaZrO3后通过生成液相而减少了第二相Ba5Nb4O15,BaNb2O6的生成.所制备的(0.35BZN0.65SZN)+0.1%MnCO3陶瓷的εr≈43.6,αe≈-8×10-6/K,tanδ=0.6×10-4,且烧结温度低于1 300℃.  相似文献   

10.
Solid solutions of (1?x)BaTiO3xBi(Mg2/3Nb1/3)O3 (0 ≤ x ≤ 0.6) were prepared via a standard mixed‐oxide solid‐state sintering route and investigated for potential use in high‐temperature capacitor applications. Samples with 0.4 ≤ x ≤ 0.6 showed a temperature independent plateau in permittivity (εr). Optimum properties were obtained for x = 0.5 which exhibited a broad and stable relative εr ~940 ± 15% from ~25°C to 550°C with a loss tangent <0.025 from 74°C to 455°C. The resistivity of samples increased with increasing Bi(Mg2/3Nb1/3)O3 concentration. The activation energies of the bulk were observed to increase from 1.18 to 2.25 eV with an increase in x from 0 to 0.6. These ceramics exhibited excellent temperature stable dielectric properties and are promising candidates for high‐temperature multilayer ceramic capacitors for automotive applications.  相似文献   

11.
Preparation and microwave dielectric properties of B2O3‐doped CaLa4Ti4O15 ceramics have been investigated. X‐ray diffraction data show that CaLa4Ti4O15 ceramic has a trigonal structure coupled with a second phase of CaLa4Ti5O17. The CaLa4Ti4O15 ceramic with addition of 0.5 wt% B2O3, sintered at 1220°C for 4 h, exhibits microwave dielectric properties with a dielectric constant of 45.8, Q × f value of 24,000 GHz, and temperature coefficient of resonant frequency (τf) of ?19 ppm/°C. B2O3‐doped CaLa4Ti4O15 ceramics, which have better sintering behavior (decrease in sintering temperature ~ 330°C) and dielectric properties than pure CaLa4Ti4O15 ceramics, are candidates for applications in microwave devices.  相似文献   

12.
(1?x)Bi1/2Na1/2TiO3xPbMg1/3Nb2/3O3[(1?x)BNT‐xPMN] ceramics have been fabricated via a conventional solid‐state method for compositions x ≤ 0.3. The microstructure, phase structure, ferroelectric, and dielectric properties of ceramics were systematically studied as high‐temperature capacitor materials. XRD pattern certified perovskite phase with no secondary phase in all compositions. As PMN concentration increased, the phase of (1?x)BNT‐xPMN ceramics transformed from ferroelectric to relaxor gradually at room temperature, with prominent enhancement of dielectric temperature stability. For the composition x = 0.2, the temperature coefficient of capacitance (TCC) was <15% in a wide temperature range from 56 to 350°C with high relative permittivity (>3300) and low dielectric loss (<0.02) at 150°C, which indicated promising future for (1?x)BNT‐xPMN system as high‐temperature stable capacitor materials.  相似文献   

13.
We reported the dielectric properties of Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal in the temperature range of 300–1073 K and the frequency range of 100 Hz–10 MHz. Our results showed the coexistence of both true‐ and pseudo‐relaxor behaviors in the crystal. The true relaxor behavior related to the paraelectric‐ferroelectric phase transition occurs at~423 K. The pseudo‐relaxor behavior appearing at~773 K was found to be related to oxygen vacancies. Further investigation reveals that the pseudo‐relaxor behavior has fine structure: it contains two oxygen‐vacancy‐related relaxation processes. The low‐temperature relaxation process is a dipolar relaxation created by the hopping motions of the oxygen vacancies, and the high‐temperature relaxation process is a Maxwell‐Wagner relaxation caused by the sample/electrode contacts.  相似文献   

14.
Piezoelectric ceramics Pb(Ni1/3Nb2/3)O3–Pb(Mg1/2W1/2)O3–Pb(Sb1/2Nb1/2)O3–Pb(Zr0.39Ti0.61)O3 with Ba(Cu1/2W1/2)O3 sintering aids were fabricated using economical industrial oxide powders and their piezoelectric, dielectric, and ferroelectric properties were investigated in order to develop low‐temperature sintering ceramics for multilayer piezoelectric actuators. A quadratic formula and the Curie–Weiss law reveal that the ceramics are typical displacive‐type ferroelectric relaxors. The ceramics sintered as low as 900°C have good piezoelectric properties of d33 = 551 pC/N, kp = 0.52, εr = 3583, tgδ = 0.02, and TC = 161°C, which is much promising to manufacture multilayer piezoelectric transducers.  相似文献   

15.
The microwave dielectric properties of Sr(Ga0.5Nb0.5)1?xTixO3 (x = 0, 0.1, 0.2 and 0.3) ceramics have been investigated together with their microstructures. Single‐phase solid solutions are achieved in this series of ceramics. The ordering features are comprehensively analyzed by transmission electron microscopy and Raman spectroscopy. Local 1:1 ordering in B‐site leads to a double‐cubic structure with space group , while Ti substitution disrupts this 1:1 ordering between Ga and Nb, and the metastable ordering between Ti and (Ga + Nb) is speculated to form due to their large size difference. The dielectric constant and temperature coefficient of resonant frequency increase nonlinearly as x increases, while the Qf value decreases gradually. The variation trend of Qf value is mainly attributed to the intrinsic loss because of the increasing vibrational anharmonicity by Ti substitution. The ordering transition from short coherence, long‐range ordering to short‐range ordering with increasing Ti content has an agreeable and weak effect on the Qf value. The best combination of microwave dielectric properties is achieved for the composition of x = 0.3: εr = 46.6, Qf = 42 200 GHz and τf = 5.0 ppm/°C.  相似文献   

16.
Microstructures and microwave dielectric properties of (1?x)Ba((Co0.55Zn0.35Mg0.1)1/3 Nb2/3)O3xBaZrO3 (= 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06) ceramics have been investigated. The 1:2 ordered structure remains in the solid solutions when x is less than 0.03, but the ordering is destabilized. While, the local ordering behavior, which generates from compositional inhomogeneous, is observed in the composition with = 0.04, where the 1:1 ordered phase begins to form. For = 0.05 and 0.06, the solid solutions are comprised of nanometer‐sized 1:1 and 1:2 ordered domains, those are dispersed in a disordered matrix. The lower Qf values of the as‐sintered ceramics mainly because of the lower ordering degrees. BaZrO3 substitution decreases both the annealing time and temperature. The effects of annealing process upon the improvement of Qf values are significant for the lower substitution levels (= 0.01 and 0.02), while only slight effects are determined for high substitution levels (= 0.04, 0.05, and 0.06). The highest Qf value of 84,500 GHz is obtained for 1 mol% BaZrO3 substituted composition, after annealing at 1300°C for 8 h.  相似文献   

17.
New lead‐free perovskite solid solution ceramics of (1 ? x)(Bi1/2Na1/2)TiO3xBa(Ni1/2Nb1/2)O3[(1?x)BNT–xBNN,= 0.02–0.06) were prepared and their dielectric, ferroelectric, piezoelectric, and electromechanical properties were investigated as a function of the BNN content. The X‐ray diffraction results indicated that the addition of BNN has induced a morphotropic phase transformation from rhombohedral to pseudocubic symmetry approximately at = 0.045, accompanying an evolution of dielectric relaxor behavior as characterized by enhanced dielectric diffuseness and frequency dispersion. In the proximity of the ferroelectric rhombohedral and pseudocubic phase coexistence zone, the = 0.045 ceramics exhibited optimal piezoelectric and electromechanical coupling properties of d33~121 pC/N and kp~0.27 owing to decreased energy barriers for polarization switching. However, further addition of BNN could cause a decrease in freezing temperatures of polar nanoregions till the coexistence of nonergodic and ergodic relaxor phases occurred near room temperature, especially for the = 0.05 sample which has negligible negative strains and thus show the maximum electrostrain of 0.3% under an external electric field of 7 kV/mm, but almost vanished piezoelectric properties. This was attributed to the fact that the induced long‐range ferroelectric order could reversibly switch back to its original ergodic state upon removal of external electric fields.  相似文献   

18.
The relationship between the piezoelectric properties and the structure/microstructure for 0.05Bi(Mg2/3Nb1/3)O3‐(0.95‐x)BaTiO3xBiFeO3 (BBFT,= 0.55, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics has been investigated. Scanning electron microscopy revealed a homogeneous microstructure for < 0.75 but there was evidence of a core‐shell cation distribution for = 0.75 which could be suppressed in part through quenching from the sintering temperature. X‐ray diffraction (XRD) suggested a gradual structural transition from pseudocubic to rhombohedral for 0.63 < < 0.70, characterized by the coexistence of phases. The temperature dependence of relative permittivity, polarization‐electric field hysteresis loops, bipolar strain‐electric field curves revealed that BBFT transformed from relaxor‐like to ferroelectric behavior with an increase in x, consistent with changes in the phase assemblage and domain structure. The largest strain was 0.41% for x = 0.63 at 10 kV/mm. The largest effective piezoelectric coefficient (d33*) was 544 pm/V for = 0.63 at 5 kV/mm but the largest Berlincourt d33 (148 pC/N) was obtained for x = 0.70. We propose that d33* is optimized at the point of crossover from relaxor to ferroelectric which facilitates a macroscopic field induced transition to a ferroelectric state but that d33 is optimized in the ferroelectric, rhombohedral phase. Unipolar strain was measured as a function of temperature for = 0.63 with strains of 0.30% achieved at 175°C, accompanied by a significant decrease in hysteresis with respect to room temperature measurements. The potential for BBFT compositions to be used as high strain actuators is demonstrated by the fabrication of a prototype multilayer which achieved 3 μm displacement at 150°C.  相似文献   

19.
(Bi2-yCay)(Zn1/3 Ta2/3)2O7陶瓷的介电弛豫和介电性能   总被引:4,自引:1,他引:4  
沈波  刘艳平  姚熹 《硅酸盐学报》2006,34(2):237-242
研究了(Bi2-yCay)(Zn1/3Ta2/3)2O7(0≤y≤1)材料的组成、结构与介电性能.当Ca含量增加时,材料的相结构由单斜焦绿石相转变为立方焦绿石相.样品在20~85℃,1 MHz时的介电常数温度系数由72×10-6/℃逐渐增加到470×10-6/℃,然后降为-100×10-6/℃,样品在微波频率下的品质因数Q值从1 250逐渐降低至40.在-60~160℃,观测到(Bi1.2Ca0.8)(Zn1/3Ta2/3)2O7样品出现介电弛豫现象.随着Ca含量的增加,介电损耗的弛豫峰向高温移动.比较了同为立方结构相的(Bi2-yCay)(Zn1/3Ta2/3)2O7(0.7<y<1)和(Bi1.5Zn0.5)(Zn0.5·Ta1.5)O7介电弛豫温区移动的差异并分析了其形成原因.  相似文献   

20.
By controlling the granulometric distribution of the powders, a density of >96% of the theoretical density has been attained for Ba(Zn1/3Ta2/3)O3 that has been sintered at a low temperature (1450°C) for a short soaking time (2 h). Attrition milling produces a very fine and monomodal powder that allows for good densification. The attrition conditions result from a compromise between granulometric distribution and the risk of pollution. We have found a great influence of the origin of the raw materials on the temperature coefficient of frequency, allowing a modulation in the range of 0-15 ppm/°C. Finally, we have studied the influence of each step of the process on the dielectric properties and identified the secondary phases that form with the evaporation of zinc: an eight-layered hexagonal perovskite and a tetragonal tungsten-bronze-type phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号