首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We firstly reported the electrocaloric properties in relaxor (1−xy)NaNbO3yBaTiO3xCaZrO3 ceramics, and high electrocaloric effect (∆T ~0.451 K and∣∆T/∆E∣~0.282 Km/MV) can be realized in the ceramics (= 0.04 and = 0.10) under low temperature and low electric field. Relaxor behavior of NaNbO3 ceramics can be found by doping both BaTiO3 and CaZrO3. In addition, optimized piezoelectric effects (d33 ~235 pC/N and d33* ~230 pm/V) can be observed in the ceramics (= 0.04 and = 0.10) due to the involved morphotropic phase boundary (MPB). Excellent piezoelectric effect (ie, d33~330 pm/V at 41°C, and d33*~332 pm/V at 60°C) can be found because of the characteristics of MPB. Good temperature reliability of piezoelectric effect can be shown because of both MPB and relaxor behavior. We believe that the ceramics with high electrocaloric effect and good piezoelectric effect can be considered as one of the most promising lead-free materials for piezoelectric devices.  相似文献   

2.
To date, most piezoceramics with a high piezoelectric coefficient (d33 > 500 pC/N) and a high Curie temperature (TC around 400°C) are BiScO3-PbTiO3-based (BS-PT-based) systems, containing the rare-earth element Sc, whose high cost hinders mass production. We investigated the effect of Nd-doping on the morphotropic phase boundary and synthesized low-cost Nd-doped PbZr0.54Ti0.46O3 (PZT) piezoceramics, achieving high piezoelectric performance. At room temperature, the piezoelectric coefficient d33 reached 550 pC/N with a T= 375°C and this changed by only 3.6% over a broad temperature range (30–260°C). The d33 value reached an ultra-high value of 941 pC/N at 345°C, which is higher than that of a BS-PT-based ceramic (810 pC/N at 350°C). The developed PZT ceramic material has a superior electrostrictive strain of 0.45% at 40 kV/cm, and a room temperature piezoelectric coefficient d33* of 1312 pm/V at 20 kV/cm. Our research provides a new paradigm for designing piezoceramics that can be used over a wide temperature range.  相似文献   

3.
Porous PZT-5H single crystals are grown by the solid state crystal growth (SSCG) method. The microstructure, phase structure and dielectric/piezoelectric properties are investigated for [001]-oriented porous PZT-5H single crystal. Evolution of phase structure with temperature is researched using in-situ temperature-dependent X-ray diffraction. The effect of pores on performance parameters is simulated using COMSOL Multiphysics® software. Ultrahigh piezoelectric coefficient d33 of up to about 1700 pC/N and effective piezoelectric coefficient d33* of up to about 3700 pm/V at 5 kV/cm are obtained. Moreover, the effective piezoelectric coefficient d33* is stable around 1900 pm/V under 3 kV/cm and 5 kV/cm in the temperature range of 70–160 °C. Importantly, the sample possess an extremely large figure of merit g33*d33 (111 × 10−12 m2/N), which is related to the presence of pores in the single crystal. This work expands the scope of PZT based single crystal and highlights their significant application possibilities in piezoelectric energy harvester, and actuator at high temperature.  相似文献   

4.
New binary system (1?x) PbTiO3?xBi(Ni1/2Zr1/2)O3 (PT–100x BNZ) with ≤ 0.45 were synthesized via solid‐state reaction route. A morphotropic phase boundary (MPB) was identified around x = 0.40 by X‐ray diffraction (XRD) method. The ceramics with MPB composition exhibit enhanced ferroelectric properties. A large piezoelectric coefficient (d33) up to 400 pC/N was obtained for the PT–40BNZ, which is comparable with the PbTiO3–BiScO3 (PT–BS, 450 pC/N).The frequency dependence of dielectric permittivity of PT–40BNZ shows characteristic of a strong relaxor feature and a transition temperature around 290°C (1 MHz). Temperature effect on the unipolar strain was also investigated. The present system with high d33 is a competitive piezoelectric material, as no expensive oxide is used here compared with the PT–BS.  相似文献   

5.
《Ceramics International》2019,45(11):13614-13619
(0.95-x)BiFeO3-xPbTiO3-0.05BaZrO3 (BF-xPT-0.05BZ) ternary ceramics were synthesized by the solid-state reaction method, which present a perovskite structure without detectable second phase. BF-0.32PT-0.05BZ ceramics display the dominant rhombohedral structure with a small amount of tetragonal phase, revealing the characteristics of morphotropic phase boundary (MPB). The well-densified ceramics possess the average grain size of 8–15 μm with different PT contents. The ferroelectric-paraelectric phase transition of BF-xPT-0.05BZ ceramics shows the characteristic of the first-order transition, which occurs at around 550 °C. It is noticeable that BF-0.32PT-0.05BZ ceramics exhibit the giant remnant polarization of 60 μC/cm2 under the field of 175 kV/cm. Moreover, BF-0.32PT-0.05BZ ceramics show the highest piezoelectric constant d33 of 105 pC/N and Qm of 501. The depolarization temperatures of BF-xPT-0.05BZ ceramics are much close to their Curie temperature TC, proving the extensive prospect for high temperature piezoelectric applications.  相似文献   

6.
The influence of stress on the small-signal dielectric permittivity and piezoelectric coefficient of polycrystalline lead-free perovskite 0.92(Na1/2K1/2)NbO3–(0.08 − x)Bi1/2Li1/2TiO3xBaZrO3 (x = 0, 0.02, 0.04, 0.06, and 0.07) was characterized under different constant uniaxial stress up to −200 MPa within a temperature range of −150 to 450°C, revealing stress-induced suppression of the electromechanical response as well as shifts in the phase boundaries. For all compositions, the interferroelectric and ferroelectric–paraelectric phase transitions were shifted to higher temperatures under the uniaxial compressive stress. Interestingly, the sensitivity to the applied stress was found to increase with increasing BZ/BLT ratio in the system. The origin of a different extent of stress-sensitivity with BZ/BLT ratio is suggested to be related to the change in the crystal structure. Additionally, at temperatures below −50°C, the relative permittivity showed a significant increase under applied compressive stress.  相似文献   

7.
There is a great demand to develop ferroelectric ceramics with both high piezoelectric coefficient and broad temperature usage range for emerging electromechanical applications. Herein, a series of Sm3+-doped 0.25Pb(Mg1/3Nb2/3)O3-(0.75−x)PbZrO3-xPbTiO3 ceramics were fabricated by solid-state reaction method. The phase structure, dielectric and piezoelectric properties were investigated, where the optimum piezoelectric coefficient d33 = 745 pC/N and electromechanical coupling factor k33 = 0.79 were obtained at the morphotropic phase boundary composition x = 0.39, with good Curie temperature TC of 242°C. Of particular importance is that high-temperature stability of the piezoelectric and field-induced strain was obtained over the temperature range up to 230°C for the tetragonal compositions of x = 0.40. The underlying mechanism responsible for the high piezoelectricity and temperature stability is the synergistic contribution of the MPB and local structural heterogeneity, providing a good paradigm for the design of high-performance piezoelectric materials to meet the challenge of piezoelectric applications at elevated temperature.  相似文献   

8.
Lead‐free piezoceramics with the composition (1?x)(K1?yNay)NbO3‐x(Bi1/2Na1/2)ZrO3 (KNyN‐xBNZ) were prepared using a conventional solid‐state route. X‐ray diffraction, Raman spectroscopy, and dielectric measurements as a function of temperature indicated the coexistence of rhombohedral (R) and tetragonal (T) phase, typical of a morphotropic phase boundary (MPB) as the BNZ concentration increased and by adjusting the K/Na ratio. High remnant polarization (Pr=24 μC/cm2), piezoelectric coefficient (d33=320 pC/N), effective piezocoefficient ({d_{33}^*}=420 pm/V), coupling coefficient (kp=48%), and high strain (S=0.168%) were obtained at room temperature, but significant deterioration of Pr, {d_{33}^*}, and kp were observed by increasing from room temperature to 160°C (17.5 μC/cm2, 338 pm/V, and 32%, respectively) associated with a transition to a purely T phase. Despite these compositions showing promise for room‐temperature applications, the deterioration in properties as a function of increasing temperature poses challenges for device design and remains to be resolved.  相似文献   

9.
The 0.34BiFeO3-0.46PbTiO3-0.2BaZrO3 (BF-PT-0.2BZ) ternary solid solutions were prepared by the solid-state reaction methods. Different amounts of Li2CO3-Bi2O3 (LB) additives were introduced into the based materials after the calcination process. Upon using LB additives, the sintering temperature of BF-PT-0.2BZ ceramics was lowered to 950°C, while the relative density was enhanced to the highest of about 97% for LB of 1 wt%. XRD results indicate that BF-PT-0.2BZ ceramics exhibit the perovskite structure without detectable second phases. SEM images reveal that BF-PT-0.2BZ ceramics are well densified and the grain size is enhanced with the addition of LB. Moreover, the piezoelectric properties are enhanced significantly, achieving the highest d33 and bipolar strain of 350 pC/N and 0.53%, respectively, for BF-PT-0.2BZ ceramics with LB of 1 wt%. Our results indicate that low-temperature sintered BF-PT-0.2BZ ceramics with excellent piezoelectric properties have promising applications in multilayer piezoelectric actuators.  相似文献   

10.
A new piezoelectric system of (1−xy)BaTiO3-yCaZrO3-xBaSnO3 (BT-yCZ-xBS) was designed to achieve enhanced piezoelectric/strain properties and temperature stability. First, the relationships between composition, phase, and electrical properties are systematically investigated. The broad phase boundary with successive rhombohedral-orthorhombic (R-O) and orthorhombic-tetragonal (O-T) was obtained in 0.04 ≤  0.05 and 0.04 ≤  0.07 by tailoring the relationship of composition and phase structure, confirmed by X-ray diffraction, temperature-dependent dielectric constants, and Raman spectra. The optimized piezoelectric coefficient of d33 = 560 pC/N, high strain of >0.20%, and large converse piezoelectric coefficient of d33* = 1170 pm/V were realized. Second, the optimized piezoelectricity both demonstrate a stable performance with fluctuation <8% for d33* and 20% for d33 between 22 and 60°C since the broad phase boundary is exhibited in this temperature range. We believe that this work is a successful example to optimize piezoelectric properties and enhance the stability for piezoceramics.  相似文献   

11.
This work investigated the effect of MnO2 addition on the phase structure, microstructure, and electrical properties of AgSbO3‐modified (Li,K,Na)(Nb,Ta)O3 (abbreviated as LKNNT‐AS) lead‐free piezoelectric ceramics with an optimized composition endowed with a state of two‐phase coexistence. A small amount (0.1 wt%) of MnO2 can significantly further enhance the piezoelectric property of LKNNT‐AS ceramics, whose piezoelectric constant d33 and converse piezoelectric coefficient d33* as well as planar electromechanical coupling factor kp reach 363 pC/N, 543 pm/V, and 0.49, respectively. The temperature stability of piezoelectricity in MnO2‐modified LKNNT‐AS samples also improved, which is associated with the more uniform and better thermally stable ferroelectric domains that were revealed by piezoresponse force microscopy.  相似文献   

12.
The poling effect on the [011]‐oriented (1?x)Pb(Mg1/3Nb2/3)O3xPbTiO3 (PMN–xPT) single crystals across the morphotropic phase boundary (MPB) was studied. The dielectric and piezoelectric properties were investigated as a function of the poling field. Domain structure evolutions during the poling process were recorded. In the unpoled PMN–xPT phase diagram, an apparent rhombohedral (R)‐tetragonal (T) phase boundary exists. With room‐temperature poling, the structure transformation sequence strongly depends on the composition. The crystal experiences a direct transition to the 2R/2T domain state in the rhombohedral or tetragonal phase field beyond the MPB region, whereas within the MPB zone it is hard to achieve the 2R/2T engineered configuration although the initial state is either rhombohedral or tetragonal as well. The piezoelectric responses of the MPB·PMN–xPTs are extraordinary weak (d33 ~ 250 pC/N), in contrast to the [011]‐oriented multidomain PMN–xPTs with ultrahigh‐piezoelectric coefficient (d33 > 1000 pC/N). We demonstrate that a slight composition variation near the MPB will significantly influence the domain evolution route and piezoelectricity for the [011]‐oriented PMN–xPT crystals. We also confirm the feasibility to realize the 2R/2T engineered domain configuration for the [011]‐oriented MPB crystals, which will extend the desired portion of the Bridgeman‐grown boules with optimal piezoelectric properties.  相似文献   

13.
(1?x)Pb(Hf1?yTiy)O3xPb(Yb0.5Nb0.5)O3 (= 0.10–0.44, = 0.55–0.80) ceramics were fabricated. The morphotropic phase boundary (MPB) of the ternary system was determined by X‐ray powder diffraction. The optimum dielectric and piezoelectric properties were achieved in 0.8Pb(Hf0.4Ti0.6)O3–0.2Pb(Yb0.5Nb0.5)O3 ceramics with MPB composition, where the dielectric permittivity εr, piezoelectric coefficient d33, planar electromechanical coupling kp, and Curie temperature Tc were found to be on the order of 1930,480 pC/N, 62%, and 360°C, respectively. The unipolar strain behavior was evaluated as a function of applied electric field up to 50 kV/cm to investigate the strain nonlinearity and domain wall motion under large drive field, where the high field piezoelectric d33* was found to be 620 pm/V for 0.82Pb(Hf0.4Ti0.6)O3–0.18Pb(Yb0.5Nb0.5)O3. In addition, Rayleigh analysis was carried out to study the extrinsic contribution, where the value was found to be in the range 2%–18%.  相似文献   

14.
A ternary ferroelectric ceramic system, (1?x?y)Pb(In1/2Nb1/2)O3xPb(Zn1/3Nb2/3)O3yPbTiO3 (PIN–PZN–PT, x = 0.21, 0.27, 0.36, 0.42), was prepared using a two‐step precursor method. The phase structure, dielectric, piezoelectric, and ferroelectric properties of the ternary ceramics were systematically investigated. A morphotropic phase boundary (MPB) was identified by X‐ray diffraction. The optimum piezoelectric and electromechanical properties were achieved for a composition close to MPB (0.5PIN–0.21PZN–0.29PT), where the piezoelectric coefficient d33, planar electromechanical coupling factor kp, and remnant polarization Pr are 660 pC/N,72%, and 45 μC/cm2, respectively. The Curie temperature TC and rhombohedral to tetragonal phase transition temperature TR?T were also derived by temperature dependence of dielectric measurements. The strongly “bended” MPB in the PIN–PT system was found to be “flattened” after addition of PZN in the PIN–PT–PZN system. The results demonstrate a possibility of growing ferroelectric single crystals with high electromechanical properties and expanded range of application temperature.  相似文献   

15.
Through modification of the heat-treatment process using a higher heating rate and a lower binder burnout temperature, the piezoelectric performance of water-quenched 0.67Bi1.05FeO3-0.33BaTiO3 (BF33BT) lead-free piezoelectric ceramics was improved. The observed physical properties of BF33BT ceramics were very sensitive to the process temperatures. The sintering temperature (TS) was changed within a narrow temperature range, and its effects were investigated. The largest rhombohedral distortion (90°-αR = 0.14°) and tetragonality (cT/aT = 1.022) were observed for the ceramic sintered at 980°C, and its Curie temperature was 476°C. This ceramic showed good piezoelectric properties and large grains; the piezoelectric sensor charge coefficient (d33) was 352 pC/N, and the piezoelectric actuator charge coefficient () was 270 pm/V. The high piezoelectric performance and low TS of BF33BT ceramics indicate their potential as new low-cost eco-friendly lead-free piezoceramics.  相似文献   

16.
In this work, we fabricated the (1‐x)BiFeO3xBaTiO3+y‰ mol CuO ceramics by the modified thermal quenching technique. The pure perovskite phase was formed and a morphotropic phase boundary (MPB) was observed in the ceramics with = 0.30‐0.33. The addition of CuO can significantly enhance the density of the BiFeO3‐BaTiO3 material. Importantly, an enhanced piezoelectric constant (d33=165 pC/N), a large electric‐field‐induced strain (?S = 0.54%: peak to peak strain) and a large piezoelectric actuator constant (d33*=449 pm/V) together with a high Curie temperature (TC) of 503°C were observed in the ceramics with = 0.30 and = 5. As a result, the enhanced piezoelectricity and large electric‐field‐induced strain could significantly stimulate further researches in BFO‐based ceramics.  相似文献   

17.
Low‐temperature sintered random and textured 36PIN–30PMN–34PT piezoelectric ceramics were successfully synthesized at a temperature as low as 950°C using Li2CO3 as sintering aids. The effects of Li2CO3 addition on microstructure, dielectric, ferroelectric, and piezoelectric properties in 36PIN–30PMN–34PT ternary system were systematically investigated. The results showed that the grain size of the specimens increased with the addition of sintering aids. The optimum properties for the random samples were obtained at 0.5 wt% Li2CO3 addition, with piezoelectric constant d33 of 450 pC/N, planar electromechanical coupling coefficient kp of 49%, peak permittivity εmax of 25 612, remanent polarization Pr of 36.3 μC/cm2. Moreover, the low‐temperature‐sintered textured samples at 0.5 wt% Li2CO3 addition exhibited a higher piezoelectric constant d33 of 560 pC/N. These results indicated that the low‐temperature‐sintered 36PIN–30PMN–34PT piezoelectric ceramics were very promising candidates for the multilayer piezoelectric applications.  相似文献   

18.
High-performance piezoelectric materials are widely used in electromechanical applications such as sensors, actuators, and transducers. Herein, improvement in electrical properties of Pb(Ni1/3Nb2/3)O3−Pb(In1/2Nb1/2)O3−PbTiO3 relaxor ferroelectrics by modulating the polymorphism of nano-scale domain is reported, and piezoelectric coefficients d33 and d33* as high as 948 pC/N and 1108 pm/V, respectively, are achieved. The high piezoelectric response is elucidated by combining cryogenic dielectric, Rayleigh analysis, and scanning electron microscopy with piezoresponse force microscope. During the transition from the tetragonal to rhombohedral phase, the morphology of the ferroelectric domains changes significantly, mesoscopic domain destruction is observed, and thus nano-scale domains appear as an extrinsic contribution of piezoelectricity. In addition, nano-scale domains promote polarization rotation, thus, improving the piezoelectric response. The improved piezoelectric performance demonstrates good thermal stability, retaining the inverse piezoelectric coefficient of approximately 1000 pm/V near 70 °C. This work provides a good example of improving ceramics' piezoelectric response by modulating the polymorphism of nanoscale domains.  相似文献   

19.
The reduction-resistant properties of piezoelectric ceramics are of great importance for multilayer monolithic structures based on base metal inner electrodes, particularly for recently reported niobate-based lead-free perovskites. In this letter, the Hall-effect measurement and impedance analysis indicate that conventional (K,Na)NbO3 (NKN)-based ceramics exhibit an n-type electronic conduction. Rapid increase in the concentrations of oxygen vacancies and electrons is responsible for severe degradation of resistivity and piezoelectric properties as sintered in N2. By comparison, p-type NKN-based ceramics by Mn doping exhibit excellent electrical properties (d33 = 368 pC/N,  = 643 pm/V, tanδ = 0.019, and IR = 39.9 GΩ · cm) in N2 sintering atmosphere, as well interpreted by a series of proposed defect chemistry equations. The experimental results suggest that an introduction of the p-type conduction behavior should be an effective strategy to enabling NKN-based ceramics and Cu/Ni electrodes to well co-fire in a weakly reducing atmosphere.  相似文献   

20.
We report a large piezoelectric constant (d33), 720 pC/N and converse piezoelectric constant (d33*), 2215 pm/V for 0.55(Ba0.9Ca0.1)TiO3-0.45Ba(Sn0.2Ti0.8)O3 ceramics; the biggest value achieved for lead-free piezoceramics so far. The ceramic powders were calcined between 1050°C-1350°C and sintered at 1480°C. The best properties were obtained at a calcination temperature (CT) of 1350°C. The fitting combination of processing and microstructural parameters for example, initial powder particle size >2 µm, ceramics density ~95%, and grain size ~40 µm led to a formation of orthorhombic-tetragonal-pseudo-cubic (O-T-PC) mixed phase boundary near room temperature, supported by Raman spectra, pointed to the extremely high piezoelectric activity. These conditions significantly increase piezoelectric constants, together with high relative permittivity (εr) >5000 and a low loss tangent (tan δ) of 0.029. In addition, the d33 value stabilizes in the range of 400-500 pC/N for all samples calcined between 1050°C and 1250°C. The results entail that the (Ba,Ca)(Sn,Ti)O3 ceramics are strong contenders to be a substitute for lead-based materials for room temperature applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号