首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Er‐doped 0.94Bi0.5Na0.5TiO3‐0.06BaTiO3 (BNT‐6BT: xEr, x is the molar ratio of Er3+ doping) lead‐free piezoceramics with = 0–0.02 were prepared and their multifunctional properties have been comprehensively investigated. Our results show that Er‐doping has significant effects on morphology of grain, photoluminescence, dielectric, and ferroelectric properties of the ceramics. At room temperature, the green (550 nm) and red (670 nm) emissions are enhanced by Er‐doping, reaching the strongest emission intensity when = 0.0075. The complex and composition‐dependent effects of electric poling on photoluminescence also have been measured. As for electrical properties, on the one hand, Er‐doping tends to flatten the dielectric constant‐temperature (εrT) curves, leading to temperature‐insensitive dielectric constant in a wide temperature range (50°C–300°C). On the other hand, Er‐doping significantly decreases the ferroelectric‐relaxor transition temperature (TF–R) and depolarization temperature (Td), with the TF–R decreasing from 76°C to 42°C for x = 0–0.02. As a result, significant composition‐dependent electrical features were found in ferroelectric and piezoelectric properties at room temperature. In general, piezoelectric and ferroelectric properties tend to become weaker, as confirmed by the composition‐dependent piezoelectric coefficient (d33), planar coupling factor (kp), and the shape of polarization‐electric field (PE), current‐electric field (J–E), bipolar/unipolar strain‐electric field (S–E) curves. Furthermore, to understand the relationship between the TF–R/Td and the electrical properties, the composition of = 0.0075 has been intensively studied. Our results indicate that the BNT‐6BT: xEr with appropriate Er‐doping may be a promising multifunctional material with integrated photoluminescence and electrical properties for practical applications.  相似文献   

2.
In this article, perovskite‐structured BiFeO3–Bi(Zn1/2Ti1/2)O3–PbTiO3 (BF–BZT–PT) ternary solid solutions were prepared with traditional solid‐state reaction method and demonstrated to exhibit a coexistent phase boundary (CPB) with Curie temperature of TC~700°C in the form of ceramics with microstructure grain size of several micron. It was found that those CPB ceramics fabricated with conventional electroceramic processing are mechanically and electrically robust and can be poled to set a high piezoelectricity for the ceramics prepared with multiple calcinations and sintering temperature around 750°C. A high piezoelectric property of TC = 560°C, d33 = 30 pC/N, ε33T0 = 302, and tanδ = 0.02 was obtained here for the CPB 0.53BF–0.15BZT–0.32PT ceramics with average grain size of about 0.3 μm. Primary experimental investigations found that the enhanced piezoelectric response and reduced ferroelectric Curie temperature are closely associated with the small grain size of microstructure feature, which induces lattice structural changes of increased amount ratio of rhombohedral‐to‐tetragonal phase accompanying with decreased tetragonality in the CPB ceramics. Taking advantage of structural phase boundary feature like the Pb(Zr,Ti)O3 systems, through adjusting composition and microstructure grain size, the CPB BF–BZT–PT ceramics is a potential candidate to exhibit better piezoelectric properties than the commercial K‐15 Aurivillius‐type bismuth titanate ceramics. Our essay is anticipated to excite new designs of high–temperature, high–performance, perovskite‐structured, ferroelectric piezoceramics and extend their application fields of piezoelectric transducers.  相似文献   

3.
The relationship between the piezoelectric properties and the structure/microstructure for 0.05Bi(Mg2/3Nb1/3)O3‐(0.95‐x)BaTiO3xBiFeO3 (BBFT,= 0.55, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics has been investigated. Scanning electron microscopy revealed a homogeneous microstructure for < 0.75 but there was evidence of a core‐shell cation distribution for = 0.75 which could be suppressed in part through quenching from the sintering temperature. X‐ray diffraction (XRD) suggested a gradual structural transition from pseudocubic to rhombohedral for 0.63 < < 0.70, characterized by the coexistence of phases. The temperature dependence of relative permittivity, polarization‐electric field hysteresis loops, bipolar strain‐electric field curves revealed that BBFT transformed from relaxor‐like to ferroelectric behavior with an increase in x, consistent with changes in the phase assemblage and domain structure. The largest strain was 0.41% for x = 0.63 at 10 kV/mm. The largest effective piezoelectric coefficient (d33*) was 544 pm/V for = 0.63 at 5 kV/mm but the largest Berlincourt d33 (148 pC/N) was obtained for x = 0.70. We propose that d33* is optimized at the point of crossover from relaxor to ferroelectric which facilitates a macroscopic field induced transition to a ferroelectric state but that d33 is optimized in the ferroelectric, rhombohedral phase. Unipolar strain was measured as a function of temperature for = 0.63 with strains of 0.30% achieved at 175°C, accompanied by a significant decrease in hysteresis with respect to room temperature measurements. The potential for BBFT compositions to be used as high strain actuators is demonstrated by the fabrication of a prototype multilayer which achieved 3 μm displacement at 150°C.  相似文献   

4.
High‐performance lead‐free piezoelectric ceramics 0.94(K0.45Na0.55)1?xLix(Nb0.85Ta0.15)O3–0.06AgNbO3 (KNNLTAg‐x) were successfully prepared by spark plasma sintering technique. The doping effect of Li on the structural and electrical properties of KNNLTAg‐x (x=0, 0.02, 0.04, 0.06, 0.08 and 0.10) ceramics was studied. The lattice structure, ferroelectric and piezoelectric properties of the KNLNTAg‐x ceramics are highly dependent on the Li doping level. In particular, the Li dopant has a great impact on both Curie temperature Tc and orthorhombic‐tetragonal transition temperature TO‐T. The 4% Li‐doped sample exhibited relatively high TO‐T of 95°C, leading to a stable dynamic piezoelectric coefficient (d33*) of 220‐240 pm/V in a broad temperature range from 25°C to 105°C. Additionally, the 2% Li‐doped sample shows a high d33* of 320 pm/V at 135°C, suggesting its great potential for high‐temperature applications.  相似文献   

5.
(Na0.52K0.4425Li0.0375)(Nb0.86Ta0.06Sb0.08)O3 powders were synthesized via sol–gel and solid‐state reaction methods as a raw material for the preparation of the ceramics. Dependence of piezoelectric properties and microstructure on sintering temperatures was investigated in this study. Sol–gel‐derived nano‐powders could be densified at a lower temperature of 940°C and exhibited excellent electrical properties after sintering at 1020°C (d33 = 424 pC/N, d33* = 780 pm/V, kp = 52.1%, and Tc = 265°C). The enhanced electric properties were most likely due to the coexistence of orthorhombic and tetragonal phase in the samples at room temperature, homogenous microstructure with fine grain and high density.  相似文献   

6.
Perovskite‐type xBi(Mg1/2Ti1/2)O3–(0.56 ? x)PbZrO3–0.44PbTiO3 (xBMT–PZ–PT) ternary solid solution ceramics were synthesized via a conventional solid‐state reaction method. The phase transition behaviors, dielectric, ferroelectric, and piezoelectric properties were investigated as a function of the BMT content. The X‐ray diffraction analysis showed that the tetragonality of xBMT–PZ–PT was enhanced with increasing the BMT content, and a morphotropic phase boundary (MPB) between rhombohedral and tetragonal phases was identified approximately in the composition of = 0.08. In addition, the dielectric diffuseness and frequency dispersion behavior were induced with the addition of BMT and a normal‐relaxor‐diffuse ferroelectric transformation was observed from the PZ‐rich side to the BMT‐rich side. The electrical properties of xBMT–PZ–PT ceramics exhibit obviously compositional dependence. The = 0.08 composition not only possessed the optimum properties with εT33/ε0 = 1450, Qm = 69, d33 = 390 pC/N, kp = 0.46, Pr = 30 μC/cm2, Ec = 1.4 kV/mm, Tc = 325°C, and a strain of 0.174% (d33* = 436 pm/V) under an electric field of 4 kV/mm as a result of the coexistence of two ferroelectric phases near the MPB, but also owned a good thermal‐depolarization behavior with a d33 value of >315 pC/N up to 290°C and a frequency‐insensitive strain behavior.  相似文献   

7.
The 0.968[(K0.48Na0.52)]Nb0.95+xSb0.05O3–0.032(Bi0.5Na0.5)ZrO3 [KNNxS–BNZ] lead‐free ceramics with nonstoichiometric niobium ion were fabricated via conventional solid‐state sintering technique and their piezoelectric, dielectric and ferroelectric properties were investigated. When x = 0.010, enhanced piezoelectric properties (d33 ≈ 421 pC/N and kp ≈ 0.47) were obtained due to the construction of rhombohendral—tetragonal phase boundary near room temperature. The KNNxS–BNZ ceramics possesses enhanced Curie temperature (Tc) with improved piezoelectric constant. A large d33 of ~421 pC/N and a high Tc ~256°C can be simultaneously induced in the ceramics with x = 0.010. Especially, good thermal stability was observed in a broad temperature range. The results indicated that our work could benefit development of KNN‐based ceramics and widen their application range.  相似文献   

8.
In the high‐temperature ternary perovskite piezoelectric system xPbTiO3yBiScO3zBi(Ni1/2,Ti1/2)O3 (PT–BS–BNiT), the addition of bismuth to the A site and nickel to the B site leads to compositions that exhibit diffuse relaxor‐like behavior. For these, depolarization temperature, not Curie point, is the critical value of temperature. Depolarization temperature (Td) is defined as the temperature at which the steepest loss in polarization occurs. This temperature is observed in poled materials through two different methods: loss tangent measurements and in situ d33. Across the ternary system, multiple dielectric anomalies occurred which was observed in dielectric tests where the dielectric peak broadens and becomes frequency dependent as BNiT content increased. For different compositions, the value of Td ranged between 275°C–375°C. Values for the piezoelectric coefficient increased with temperature up to d33 = 1000 pC/N during in situ d33. High temperature (up to 190°C) and high field (up to 40 kV/cm) were also applied to test ferroelectric properties in these regimes.  相似文献   

9.
A ternary ferroelectric ceramic system, (1?x?y)Pb(In1/2Nb1/2)O3xPb(Zn1/3Nb2/3)O3yPbTiO3 (PIN–PZN–PT, x = 0.21, 0.27, 0.36, 0.42), was prepared using a two‐step precursor method. The phase structure, dielectric, piezoelectric, and ferroelectric properties of the ternary ceramics were systematically investigated. A morphotropic phase boundary (MPB) was identified by X‐ray diffraction. The optimum piezoelectric and electromechanical properties were achieved for a composition close to MPB (0.5PIN–0.21PZN–0.29PT), where the piezoelectric coefficient d33, planar electromechanical coupling factor kp, and remnant polarization Pr are 660 pC/N,72%, and 45 μC/cm2, respectively. The Curie temperature TC and rhombohedral to tetragonal phase transition temperature TR?T were also derived by temperature dependence of dielectric measurements. The strongly “bended” MPB in the PIN–PT system was found to be “flattened” after addition of PZN in the PIN–PT–PZN system. The results demonstrate a possibility of growing ferroelectric single crystals with high electromechanical properties and expanded range of application temperature.  相似文献   

10.
The (1?x) (Bi0.5Na0.5)TiO3?xBa(Al0.5Ta0.5)O3((1?x)BNT‐xBAT) lead‐free piezoceramics was fabricated using a conventional solid‐state reaction method. The temperature and composition‐dependent strain behavior, dielectric, ferroelectric (FE), piezoelectric, and pyroelectric properties have been systematically investigated to develop lead‐free piezoelectric materials with large strain response for actuator application. As the BAT content increased, the FE order is disrupted resulting in a degradation of the remanent polarization, coercive field, and the depolarization temperature (Td). A large strain of 0.36% with normalized strain d33* = 448pm/V was obtained for the optimum composition = 0.045 at room temperature. The bipolar and unipolar strains for the compositions x = 0.035 and x = 0.04 reach almost identical maximum values when the temperature is in the vicinity of their respective depolarization temperature (Td). The Raman‐spectra analysis, macroscopic properties, thermal depolarization results, and temperature‐dependent relationships of both polarization and strain demonstrated that the origin of the large strain response for this investigated system is attributed to a field‐induced relaxor to FE phase transformation.  相似文献   

11.
The piezoelectric properties of (K0.5Na0.5)NbO3 (KNN) are normally enhanced by chemical substitutions or doping to form solid solutions. In this study, we report that the piezoelectric properties of KNN and thermal stability of piezoelectric coefficient d33 can be both enhanced by forming the composite of KNN:ZnO. The d33 of KNN:0.2ZnO can be improved to 110 pC/N by introducing the ZnO nanoparticles, which is better than the pure KNN (d33 = 85 pC/N). The Curie temperature (TC = 407°C) remains well comparable to the pure KNN (TC = 408°C). Furthermore, the thermal stability of both remanent polarization (Pr) and piezoelectric parameter (d33) is improved. The enhanced thermal stability could be related to the induced built‐in electric field or the enhanced sinterability by the addition of ZnO. The present results may help to optimize the piezoelectric properties of lead‐free materials by forming composite.  相似文献   

12.
The series of 0.86BaTiO3–(0.14?x)BaZrO3xCaTiO3 (abbreviated as BT–BZ–xCT) ceramics with 0.03 ≤  0.11 were studied to obtain high piezoelectric properties. Rietveld refinement analysis indicated that the BT–BZ–CT compositions follow a gradual rhombohedral (R) → orthorhombic (O) + R → + tetragonal (T) → T phase transformation with increasing x. Clear evidence of the series of ferroelectric phase transitions was also found in the dielectric results. The RO and OT transition temperature shifted close to ambient temperature, while the Curie temperature slightly increased with increasing x. In addition to the dielectric loss peaks associated with the structural phase transitions, a broad low‐temperature dielectric loss peak was detected in the R phase at = 90‐150 K. This dielectric relaxation was attributed to the domain wall freezing and fits well to the Vogel‐Fulcher model with activation energy Ea ≈ 60‐300 meV and freezing temperature TVF ≈ 75‐140 K. High piezoelectric strain coefficient (d33*) of about 1030 pm/V at 10 kV was achieved at = 0.07, and a high Curie temperature (TC) was maintained at about 375 K.  相似文献   

13.
A new lead‐potassium‐free ceramic of (0.9‐x)NaNbO3‐0.1BaTiO3‐xNaSbO3 (NN‐BT‐xNS) was successfully prepared via a solid‐state reaction method. The microstructure, phase structure, dielectric, ferroelectric, and piezoelectric properties were investigated as a function of NS content. The substitution of NS for NN was found to dramatically change the grain morphology from cube‐like grains typical for alkaline niobate‐based ceramics to conventional sphere‐like grains especially for Pb‐based perovskite ceramics. A normal to relaxor ferroelectric phase transformation was accompanied by a tetragonal (T) to rhombohedral (R) phase transition. A composition‐temperature phase diagram demonstrated a vertical morphotropic phase boundary between T and R phases in the composition range of x=0.03‐0.04, where optimum electrical properties of d33=252 pC/N, kp=36%, Qm=168, =2063, and Tc=109°C were obtained in the x=0.035 ceramic sintered at 1260°C. Particularly, excellent temperature insensitivity of small‐signal piezoelectric properties suggested large application potentials in various actuators and sensors in comparison with other typical lead‐free materials.  相似文献   

14.
This work investigated the effect of MnO2 addition on the phase structure, microstructure, and electrical properties of AgSbO3‐modified (Li,K,Na)(Nb,Ta)O3 (abbreviated as LKNNT‐AS) lead‐free piezoelectric ceramics with an optimized composition endowed with a state of two‐phase coexistence. A small amount (0.1 wt%) of MnO2 can significantly further enhance the piezoelectric property of LKNNT‐AS ceramics, whose piezoelectric constant d33 and converse piezoelectric coefficient d33* as well as planar electromechanical coupling factor kp reach 363 pC/N, 543 pm/V, and 0.49, respectively. The temperature stability of piezoelectricity in MnO2‐modified LKNNT‐AS samples also improved, which is associated with the more uniform and better thermally stable ferroelectric domains that were revealed by piezoresponse force microscopy.  相似文献   

15.
Lead zirconate titanate (PbZr1 ? xTixO3, PZT)/epoxy composites with one‐ dimensional epoxy in PZT matrix (called 3‐1 type piezocomposites) have been fabricated by tert‐butyl alcohol (TBA)‐based directional freeze casting of PZT matrix and afterward infiltration of epoxy. The composites with PZT volume fraction ranging from 0.36 to 0.69 were obtained by adjusting initial solid loading in freeze‐casting slurry. The effect of poling voltage on piezoelectric properties of the composites was studied for various volume fraction of PZT phase. With the increasing of PZT volume fraction, relative permittivity (εr) increased linearly and piezoelectric coefficient (d33 and d31) increased step by step. The resultant composites with 0.57 PZT volume fraction possessed the highest hydrostatic piezoelectric strain coefficient (dh) value (184 pC/N), voltage coefficient (gh) value (13.6 × 10?3 V/m Pa), and hydrostatic figure of merit (HFOM) value (2168 × 10?15 Pa?1).  相似文献   

16.
The properties of relaxor ceramics in the compositional series (1?x)K0.5Bi0.5TiO3xBa(Ti0.8Zr0.2)O3 have been investigated. Values of Tm, the temperature of maximum relative permittivity, decreased from 380°C at = 0.0 to below room temperature for > 0.7. Compositions = 0.1 and 0.2 were piezoelectric and ferroelectric. The maximum value of d33 piezoelectric charge coefficient, 130 pC/N, and strain, 0.14%, occurred at = 0.1. Piezoelectric properties of = 0.1 were retained after thermal cycling from room temperature to 220°C, consistent with results from high‐temperature X‐ray diffraction indicating a transition to single‐phase cubic at ~300°C.  相似文献   

17.
In this work, we report a lead‐free piezoelectric ceramic of (0.9‐x)NaNbO3‐0.1BaTiO3xBaZrO3, and the effects of BaZrO3 on the phase structure, microstructure, electrical properties and temperature stability are investigated. A morphotropic phase boundary‐like region consisting of rhombohedral (R) and tetragonal (T) phases is constructed in the compositions with = 0.035‐0.04. More importantly, in situ temperature independence of the piezoelectric effect {piezoelectric constant (d33) and strain} can be achieved below the Curie temperature (Tc). Intriguingly, the electric field‐induced strain is still observed at ≥ Tc due to the combined actions of the electrostrictive effect and the electric field‐induced phase transition. We believe that NaNbO3‐based ceramics of this type have potential for applications in actuators and sensors.  相似文献   

18.
Lead free piezoelectric ceramics of Y3+‐doped Ba1?xCaxZr0.07Ti0.93O3 with = 0.05, 0.10, and 0.15 were prepared. Composition and temperature‐dependent structural phase evolution and electrical properties of as‐prepared ceramics were studied systematically by X‐ray diffraction, Raman spectroscopy, impedance analyzer, ferroelectric test system, and unipolar strain measurement. Composition with = 0.10 performs a good piezoelectric constant d33 of 363 pC/N, coercive field Ec of 257 V/mm, remanent polarization Pr of 14.5 μC/cm2, and a Curie temperature Tm of 109°C. High‐resolution X‐ray diffraction was introduced to indicate presence of orthorhombic phase. Converse piezoelectric constant d33* of = 0.10 composition performed better temperature stability in the range from 50°C to 110°C. That means decreasing orthorhombic–tetragonal phase transition temperature could be an effective way to enlarge its operating temperature range.  相似文献   

19.
Bulk ceramic 72.5 mol%(Bi0.5Na0.5)TiO3–22.5 mol%(Bi0.5K0.5)TiO3–5 mol%Bi(Mg0.5Ti0.5)O3 (BNT–BKT–BMgT) has previously been reported to show a large high‐field piezoelectric coefficient (d33* = 570 pm/V). In this work, the same composition was synthesized in thin film embodiments on platinized silicon substrates via chemical solution deposition. Overdoping of volatile cations in the precursor solutions was necessary to achieve phase‐pure perovskite. An annealing temperature of 700°C resulted in good ferroelectric properties (Pmax = 52 μC/cm2 and Pr = 12 μC/cm2). Quantitative compositional analysis of films annealed at 650°C and 700°C indicated that near ideal atomic ratios were achieved. Compositional fluctuations observed through the film thickness were in good agreement with the existence of voids formed between successive spin‐cast layers, as observed with electron microscopy. Bipolar and unipolar strain measurements were performed via double laser beam interferometry and a high effective piezoelectric coefficient (d33,f) of approximately 75 pm/V was obtained.  相似文献   

20.
AgSbO3 was doped into KNN‐based lead‐free piezoceramics with an optimized composition of Li0.02(Na0.53K0.48)0.98Nb0.8Ta0.2O3 (abbreviated as LKNNT) to further enhance its piezoelectric property. The doping of AgSbO3 was found to be effective in reducing the grain sizes, resulting in more uniform microstructure in AgSbO3‐doped LKNNT ceramics. AgSbO3 lowers tetragonal‐orthorhombic phase transition point (TT‐O), but with a more gentle rate as compared with other dopants. A large converse piezoelectric coefficient d33* up to 598 pm/V under a relatively low electric field of 1 kV/mm was obtained in the LKNNT‐5 mol% AgSbO3 composition, whose tetragonal‐orthorhombic phase transition point (TT‐O) was controlled near room temperature, but its Curie temperature was kept at 235°C. The d33* obtained in the present material is a very high value for nontextured KNN‐based ceramics, which is attributed to the polymorphism phase transition effect and “soft” behavior caused by the addition of AgSbO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号