首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ti2AlCx ceramic was produced by reactive hot pressing (RHP) of Ti:Al:C powder mixtures with a molar ratio of 2:1:1–.5 at 10–20 MPa, 1200–1300°C for 60 min. X-ray diffraction analysis confirmed the Ti2AlC with TiC, Ti3Al as minor phases in samples produced at 10–20 MPa, 1200°C. The samples RHPed at 10 MPa, 1300°C exhibited ≥95 vol.% Ti2AlC with TiC as a minor phase. The density of samples increased from 3.69 to 4.04 g/cm3 at 10 MPa, 1200°C, whereas an increase of pressure to 20 MPa resulted from 3.84 to 4.07 g/cm3 (2:1:1 to 2:1:.5). The samples made at 10 MPa, 1300°C exhibited a density from 3.95 to 4.07 g/cm3. Reaction and densification were studied for 2Ti–Al–.67C composition at 10 MPa, 700–1300°C for 5 min showed the formation of Ti–Al intermetallic and TiC phases up to 900°C with Ti, Al, and carbon. The appearance of the Ti2AlC phase was ≥1000°C; further, as the temperature increased, Ti2AlC peak intensity was raised, and other phase intensities were reduced. The sample made at 700°C showed a density of 2.87 g/cm3, whereas at 1300°C it exhibited 3.98 g/cm3; further, soaking for 60 min resulted in a density of 4.07 g/cm3. Microhardness and flexural strength of Ti2AlC0.8 sample were 5.81 ± .21 GPa and 445 ± 35 MPa.  相似文献   

2.
A comprehensive reaction mechanism of Ti3AlC2 MAX-phase formation from its elemental powders while spark plasma sintering has been proposed. Microstructural evaluation revealed that Al-rich TiAl3 intermetallic forms at around 660 °C once Al melts. Gradual transition from TiAl3 to Ti-rich TiAl and Ti3Al intermetallic phases occurs between 700 °C and 1200 °C through formation of layered structure due to diffusion of Al from periphery toward the centre of Ti particles. Formation of TiC and Ti3AlC transient carbide phases were observed to occur through two different reactions beyond 1000 °C. Initially, TiC forms due to interaction of Ti and C, which further reacts with TiAl and Ti and gives rise to Ti3AlC. Later, Ti3AlC also forms due to diffusion of C into Ti3Al above 1200 °C. Above 1300 °C, Ti3AlC phase decomposes into Ti2AlC MAX-phase and TiC in presence of unreacted C. Finally, Ti2AlC and TiC reacts together to from Ti3AlC2 MAX-phase above 1350 °C and completes at 1500 °C.  相似文献   

3.
Using spark plasma sintering, Ti3AlC2/W composites were prepared at 1300°C. They contained “core‐shell” microstructures in which a TixW1?x “shell” surrounded a W “core”, in a Ti3AlC2 matrix. The composite hardness increased with W addition, and the hardening effect is likely achieved by the TixW1?x interfacial layer providing strong bonding between Ti3AlC2 and W, and by the presence of hard W. Microstructural development during high‐temperature oxidation of Ti3AlC2/W composites involves α‐Al2O3 and rutile (TiO2) formation ≥1000°C and Al2TiO5 formation at ~1400°C while tungsten oxides appear to have volatilized above 800°C. Likely due to exaggerated, secondary grain growth of TiO2‐doped alumina and the effect of W addition, fine (<1 μm) Al2O3 grains formed dense, anisomorphic laths on Ti3AlC2/5 wt%W surfaces ≥1200°C and coarsened to large (>5 μm), dense, TiO2‐doped Al2O3 clusters on Ti3AlC2/10 wt%W surfaces ≥1400°C. W potentially affects the oxidation behavior of Ti3AlC2/W composites beneficially by causing formation of TixW1?x thus altering the defect structure of Ti3AlC2, resulting in Al having a higher activity and by changing the scale morphology by forming dense Al2O3 laths in a thinner oxide coating, and detrimentally through release of volatile tungsten oxides generating cavities in the oxide scale. For Ti3AlC2/5 wt%W oxidation, the former beneficial effects appear to dominate over the latter detrimental effect.  相似文献   

4.
Niobium aluminum carbide (Nb4AlC3), as a member of the MAX phases, can retain its stiffness and strength up to over 1400°C. However, its applications are limited due to its poor oxidation resistance at high temperatures. In this work, silicon pack cementation has been applied to improve the oxidation resistance of Nb4AlC3. After Si pack cementation at 1200°C for 6 h, a dense and uniform silicide coating which was mainly composed of NbSi2 and SiC and well bonded to the matrix was successfully formed on the surface of Nb4AlC3. The Si pack cemented Nb4AlC3 shows excellent oxidation resistance up to 1200°C due to the formation of protective Al2O3 layer. The oxidation kinetics of the cemented Nb4AlC3 obey parabolic law all the way to up to 1200°C, and the parabolic rate constants of cemented Nb4AlC3 are in the same order of magnitude as those of Ti3AlC2 in the temperature range 1000°C–1200°C. However, the oxidation of the cemented Nb4AlC3 was accelerated after oxidation at 1300°C for about 15 h due to the formation of NbAlO4.  相似文献   

5.
TiO2 was selected as effective sintering aid for pressureless sintering of Ti3AlC2 ceramics in this study. The addition of only 5?wt% TiO2 largely promotes the densification and nearly dense Ti3AlC2 ceramic was obtained by pressureless sintering at 1500?°C. Significant strengthening and toughening effects were observed with the addition of TiO2. High Vickers hardness, flexural strength and fracture toughness of 3.22?GPa, 298?MPa and 6.2?MPa?m?1/2, respectively, were achieved in specimen pressureless sintered with 10?wt% TiO2. Additionally, the addition of 5?wt% TiO2 had no deleterious effect on the excellent oxidation resistance of Ti3AlC2 ceramic under 1200?°C water vapor atmosphere, while addition of 10?wt% TiO2 accelerates the oxidation rate by two orders of degree.  相似文献   

6.
《Ceramics International》2016,42(6):7347-7352
MAX phase Ti3AlC2 was chosen as a novel sintering aid to prepare electrically conductive B4C composites with high strength and toughness. Dense B4C composites can be obtained at a hot-pressing temperature as low as 1850 °C with 15 vol% Ti3AlC2. The enhanced sinterability was mainly ascribed to the in situ reactions between B4C and Ti3AlC2 as well as the liquid phase decomposed from Ti3AlC2. Both the Vickers hardness and fracture toughness increase with increasing Ti3AlC2 amount, and high hardness and toughness values of 28.5 GPa and 7.02 MPa m−1/2 respectively were achieved for B4C composites sintered with 20 vol% Ti3AlC2 at 1900 °C. Crack deflection by homogenously distributed TiB2 particles was identified as the main toughening mechanism. Besides, B4C composites sintered with Ti3AlC2 show significantly improved electrical conductivity due to the percolation of highly conductive TiB2 phase, which could enhance the machinability of B4C composites largely by allowing electrical discharge machining.  相似文献   

7.
This work reports the first mechanical properties of Ti3AlC2-Ti5Al2C3 materials neutron irradiated at ∼400, 630 and 700 °C at a fluence of 2 × 1025 n m−2 (E > 0.1 MeV) or a displacement dose of ∼2 dpa. After irradiation at ∼400 °C, anisotropic swelling and loss of 90% flexural strength was observed. After irradiation at ∼630–700 °C, properties were unchanged. Microcracking and kinking-delamination had occurred during irradiation at ∼630–700 °C. Further examination showed no cavities in Ti3AlC2 after irradiation at ∼630 °C, and MX and A lamellae were preserved. However, disturbance of (0004) reflections corresponding to M-A layers was observed, and the number density of line/planar defects was ∼1023 m−3 of size 5–10 nm. HAADF identified these defects as antisite TiAl atoms. Ti3AlC2-Ti5Al2C3 shows abrupt dynamic recovery of A-layers from ∼630 °C, but a higher temperature appears necessary for full recovery.  相似文献   

8.
《Ceramics International》2022,48(1):190-198
Ti3AlC2 ceramic exhibits potential in Ag-based composite electrical contact materials, but its interface characteristic with Ag matrix remains unexplored. In this work, sessile drop experiment is carried out to investigate the high-temperature wetting behavior of molten Ag with Ti3AlC2. Stable Ti3AlC2 is hardly wetted by molten Ag below 1000 °C(contact angle of 148.5°), but the wettability of Ag/Ti3AlC2 improves with the increasing temperature(final 14° at ~1130 °C). In contrast, the Ti3C2, a MXene with Al layer removed from its parent Ti3AlC2, exhibits inferior wettability with Ag(final 56.5° at ~1130 °C). Wetting mechanism of Ag/Ti3AlC2 is proposed on the basis of the interfacial structure and chemical composition. Increasing temperature accelerates dissociation of Ti3AlC2, and outward-escaping Al reacts with Ag to form interface layer with a composition of Ag4.86Ti8.66AlC7.59, Ag also diffuses along Ti3AlC2 grain boundaries and forms gradient reactive products(Ag–Ti–Al–C), which promotes their wettability. Finally comprehensive properties of Ag/Ti3AlC2 and Ag/Ti3C2 are compared. Al–Ag interdiffusion slightly decreases the electrical conductivity of Ag/Ti3AlC2 bulk material, but strengthen the interface bonding of composite and promote the viscosity of the molten pool, leading to the superior mechanical and anti-arc erosion properties. Absence of Al–Ag interdiffusion does remarkably improve the electrical conductivity of Ag/Ti3C2 bulk materials, but lack of Al layer damages the mechanical core and wettability with Ag, resulting in a drastic decrease of anti-arco erosion property.  相似文献   

9.
Ti3AlC2, one of Ti-Al-C MAX phases, has received extensive attention due to its unique nano-laminated structure and combined properties of metals and ceramics. However, ultra-high synthesis temperature exceeding 800 °C is a critical challenge for broad application of Ti3AlC2 coatings on temperature-sensitive substrates. In this study, Ti-Al-C coatings were deposited on Ti-6Al-4V substrates using high-power impulse magnetron sputtering (HiPIMS) and DC sputtering (DCMS) for comparison. Different from as-deposited amorphous Ti-Al-C coating by DCMS, nanocrystalline TiAlx compound was achieved by HiPIMS deposition due to highly ionized plasma flux with high kinetic energy. Furthermore, HiPIMS promoted the generation of dense and smooth Ti3AlC2 phase coating after low-temperature annealing at 700 °C, while annealed DCMS coating only obtained Ti2AlC. In-situ XRD demonstrated such Ti3AlC2 phase could be early involved in crystallization at 450 °C, lowest than synthesis temperature ever reported. The mechanical properties of Ti3AlC2 coating were also discussed in terms of structural evolution.  相似文献   

10.
Nb-based ‘312’ MAX phase has not been recognized so far, raising a hypothesis that Nb doping would destabilize the isostructural Ti3AlC2. Here we report that (Ti1−xNbx)3AlC2 could persist with a doping limitation up to x = 0.15. As demonstrated by HAADF-STEM analysis, Nb dopants homogeneously distribute among polycrystalline grains at the microscale and randomly occupy the Ti sites at the atomic level. Beyond the limitation, Nb-doped ‘312’ phase Ti3AlC2 decomposes into (Ti,Nb)C, Nb-doped ‘211’ phase Ti2AlC, and Nb-based ‘413’ phase. Compared to pristine Ti3AlC2, the compressive strength of (Ti0.9Nb0.1)3AlC2 at 1200 °C increases by 130%, whereas doping at this level impairs the oxidation resistance. Improving high-temperature strength without deteriorating oxidation resistance can be achieved by 5% Nb doping.  相似文献   

11.
Ternary carbide Ti3AlC2 was synthesized by mechanical alloying (MA) and spark plasma sintering (SPS) from elemental powder mixtures of Ti, Al and C, and the effect of Al content on formation of Ti3AlC2 during both processes was investigated. The results showed that adding proper Al content in the staring materials significantly increased the phase purity of Ti3AlC2 in the synthesized samples. Dense and high-purity Ti3AlC2 with <1 wt.% TiC could be successfully obtained by spark plasma sintering of powders mechanically alloyed for 9.5 h from a starting powder mixtures of 3Ti/1.1Al/2C at a lower sintering temperature of 1050 °C for 10–20 min.  相似文献   

12.
《Ceramics International》2021,47(18):25520-25530
(Ti0·8Mo0.2)3AlC2 solid solutions were successfully synthesized from Ti, Al, TiC, and Mo powders using the in situ hot-pressing sintering method. The tribological properties of (Ti0·8Mo0.2)3AlC2 and the reference Ti3AlC2 in the temperature range 25–800 °C were evaluated in ambient air with the counterpart of Al2O3 balls. The results show that (Ti0·8Mo0.2)3AlC2 has improved lubricating properties and wear resistance above 400 °C compared with Ti3AlC2. This can be contributed to the formation of tribo-oxidation films containing MoO3 and MoO3-x. Structural characterization of the tribo-oxidation films was conducted using SEM, EDS, Raman spectroscopy, and XPS to evaluate the effect of Mo doping on the wear mechanisms of Ti3AlC2 in detail.  相似文献   

13.
A dense SiC/Ti3Si(Al)C2 composite was synthesized by in situ hot pressing powders of Si, TiC and Al as a sintering additive at 1500 °C for 2 h under 30 MPa in Ar atmosphere. This composite has a fine-grained and homogeneous microstructure with grain sizes of 5 μm for Ti3Si(Al)C2 and of 1 μm for SiC. The SiC/Ti3Si(Al)C2 composite possesses an improved oxidation resistance, with parabolic rate constants of 4.57 × 10?8 kg2/m4/s at 1200 °C and 1.31 × 10?7 kg2/m4/s at 1300 °C. This study provides an experimental evidence to confirm the formation of amorphous phases in the oxide scale of the SiC/Ti3Si(Al)C2 composite. Microstructure and phase composition of the SiC/Ti3Si(Al)C2 composite and oxide scales were identified by X-ray diffractometry and scanning electron microscopy. The mechanism for the enhanced oxidation resistance has been discussed.  相似文献   

14.
《Ceramics International》2022,48(7):9205-9217
Porous Mo2Ti2AlC3 was synthesized by reactive synthesis of the mixed powder of molybdenum, aluminum, titanium hydride and graphite at 1500 °C. The effects of sintering temperature on the phase transition and pore structure parameters of porous Mo2Ti2AlC3 were deeply discussed, and the pore forming mechanism in the sintering process was further deduced. The results showed that the pore formation of porous Mo2Ti2AlC3 consists of the following aspects: (i) At 500 °C, stearic acid was completely pyrolyzed; (ii) At 700 °C, titanium hydride was completely decomposed into titanium and hydrogen via endothermic reaction; (iii) The partial diffusion effect of aluminum in the formation of TiAl and Mo3Al intermetallic compounds; (iv) The solid-solid reaction of titanium and molybdenum with graphite generated TiC and Mo2C; (v) TiC, Mo2C, Ti2AlC, Mo3Al and graphite further reacted to form Mo2Ti2AlC3,where pore formation was mainly controlled by (iii) and (v). In addition, the corrosion resistance and mechanical properties of porous Mo2Ti2AlC3 were also explored.  相似文献   

15.
《应用陶瓷进展》2013,112(7):424-429
Abstract

Ti3AlC2 is successfully synthesised by in situ hot pressing process from 2TiC/xAl/Ti (x?=?1, 1·2) raw powders. The phases and microstructure of the samples are identified by X-ray diffraction and scanning electron microscopy. It is found that aluminium content influences on the generating content of Ti3AlC2 significantly. High purity Ti3AlC2 can be obtained from a compacted cylinder composed of TiC–Ti–1·2Al at 1350°C for 2 h, and the purity of Ti3AlC2 is nearly 96·9 wt-%. The corresponding density and compressive strength are 3·93 g·cm?3 and 377·34 MPa respectively. Ti3AlC2 grain exhibits typical plate-like structure. When aluminium melts, a mass of Al atoms diffuse to Ti grain rapidly, and Ti–Al intermetallic compounds generate. Then, Ti–Al intermetallic compounds react with TiC to form Ti3AlC2 directly. Using TiC powders as the raw materials provides Ti6C octahedra directly. At elevated temperature, a part of aluminium will evaporate and lose. This will result in that every two layers of Ti6C octahedra are linked by aluminium planes directly and Ti3AlC2 can be formed.  相似文献   

16.
In this work, the Cr-Ti-Mo ternary o-MAX ceramics based on the Cr2TiAlC2 phase are synthesized, and their tribological performance at elevated temperatures up to 800 ºC in the air is evaluated. With Si3N4 as a tribocouple, an unexpected ultra-low wear rate reaching 6.1 × 10?8 mm3 N?1 m?1 is observed in Cr1.9Ti0.9Mo0.2AlC2 at 800 ºC, accompanied by a stable coefficient of friction (COF) around 0.33 in a wide temperature range. X-ray photoelectron spectroscopy (XPS) depth profiling confirms a tribofilm with gradient composition, which simultaneously offers fluid lubricating at elevated temperatures and self-healing after cooling. Particularly, confirmed by the theoretical simulations, the doping of Mo improves the interlayer binding as well as alters the oxidation behaviors of Cr2TiAlC2. With an optimal interlayer binding strength and oxidation rate, the Cr1.9Ti0.9Mo0.2AlC2 can generate a tribofilm possessing ideal composition, which simultaneously promotes lubrication and anti-wear performance at elevated temperatures.  相似文献   

17.
A TiB2–Ti3AlC2 ceramic was manufactured by spark plasma sintering at 1900 °C temperature for 7 min soaking time under 30 MPa biaxial pressure. The role of Ti3AlC2 additive on the microstructure development, densification behavior, phase evolution, and hardness of the ceramic composite were studied. The phase characterization and microstructural investigations unveiled that the Ti3AlC2 MAX phase decomposes at the initial stages of the sintering. The in-situ formed phases, induced by the decomposition of Ti3AlC2 additive, were identified and scrutinized by XRD and FESEM/EDS techniques as well as thermodynamics principles. The sintered TiB2–Ti3AlC2 ceramic approached a near full density of ~99% and a hardness of ~28 GPa. The densification mechanism and sintering phenomena were discussed and graphically illustrated.  相似文献   

18.
MAX phases have emerged as promising corrosion-resistant electromagnetic interference (EMI) shielding materials. Herein, four MAX phases: Ti3SiC2, Ti3AlC2, V0.5Cr1.5AlC, and Nb4AlC3, were synthesized via solid–liquid reactions. The electrical conductivities of Ti3SiC2, Ti3AlC2, V0.5Cr1.5AlC, and Nb4AlC3 are 14.7 × 103, 15.5 × 103, 5.1 × 103, 8.0 × 103 S/cm, respectively, and the corresponding average EMI shielding effectiveness values in the frequency of 18–26.5 GHz are 53.9, 69.2, 19.4, and 29.0 dB, respectively. Most importantly, these MAX phases are highly corrosion resistant under acidic conditions. Despite the exposure to the acidic environment and a slight decrease in the electrical conductivity, the corroded MAX phases exhibited excellent EMI shielding properties compared to the pristine MAX phases. Additional analysis showed that reflection was the primary EMI blocking mechanism. The study offers a guide for designing MAX phase ceramics that exhibit high EMI shielding performance in corrosive environments.  相似文献   

19.
Nanocrystalline yttria-stabilized tetragonal zirconia polycrystal (nc-Y-TZP) powders coated with silicate based glasses were cold isostatically pressed and sintered near to the full density (98–99%). Two glasses with different compositions were used: 93 SiO2–1 Na2O–6 SrO (mol%) (designated as SNS glass) and 58 SiO2–29 Al2O3–13 SrO (designated as SAS glass). Uniaxial compression tests of the pure (glass-free) nc-Y-TZP samples yielded strain rates as high as 2·10−4 s−1 under 60 MPa at 1300 °C. Comparable strain rates were measured in the SNS glass-containing samples, with the maximum of 3·10−4 s−1 at 1300 °C under a stress of 80 MPa (5 vol.% SNS glass content). Compression tests under 100 MPa exhibited relatively high strain rates of 5·10−4 and 10−4 at 1300 °C and 1200 °C, respectively, in the 15 vol.% SAS glass samples. The strain rates measured in the SAS glass-containing samples were achieved at temperatures lower by 100 °C compared to the similar strain rates in the glass-free and SNS glass-containing samples. The microstructure of the deformed samples was similar to that of samples before deformation, within which the ultrafine and equiaxed character of the grains was preserved. Clear evidence for cooperative grain boundary sliding was observed in the SAS glass-containing samples.  相似文献   

20.
Submicron Ti2AlC MAX phase powder was synthesized by molten salt shielded synthesis (MS3) using a Ti:Al:C molar ratio of 2:1:0.9 at a process temperature of 1000°C for 5  hours. The synthesized powder presented a mean particle size of ~0.9 µm and a purity of 91 wt. % Ti2AlC, containing 6 wt. % Ti3AlC2. The Ti2AlC powder was sintered by pressureless sintering, achieving a maximal relative density of 90%, hence field-assisted sintering technology/spark plasma sintering was used to enhance densification. The fine-grained microstructure was preserved, and phase purity of Ti2AlC was unaltered in the latter case, with a relative density of 98.5%. Oxidation was performed at 1200°C for 50 hours in static air of dense monolithic Ti2AlC with different surface finish, (polished, ground and sandblasted) which resulted in the formation of an approx. 8 µm thin aluminum oxide (Al2O3) layer decorated with titanium dioxide (rutile, TiO2) colonies. Surface quality had no influence on Al2O3 scale thickness, but the amount and size of TiO2 crystals increased with surface roughness. A phenomenon of rumpling of the thermally grown oxide (TGO) was observed and a model to estimate the extent of deformation is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号