首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Amorphous oxide film was prepared on the titanium substrate by plasma electrolytic oxidation (PEO) technology in acidic electrolyte consisting of tungstate and then subject to calcination in air. Films were characterized by scanning electron microscopy, energy dispersive X‐ray, X‐ray diffraction, X‐ray photoelectron spectroscopy, photoluminescence, and UV‐Vis DRS before and after calcination, respectively. Calcined film consisted of anatase and WO3, showing more open structure compared with uncalcined film. Furthermore, the absorption edge of calcined film was shifted to visible light region and the recombination of photo‐induced carriers was inhibited effectively, resulting that WO3/TiO2 composite film produced by PEO technology and calcination should be effective as a visible‐light‐responsive photocatalyst.  相似文献   

2.
Indium (2.9, 3.5, and 4.9 at. %)‐doped and pristine monoclinic BiVO4 nanoparticles were synthesized by hydrothermal method. They were characterized by high‐resolution scanning electron, field emission scanning electron, transmission electron and high‐resolution transmission electron microscopies, powder X‐ray and selected‐area electron diffractometries, energy‐dispersive X‐ray, Raman, UV‐visible diffuse reflectance, photoluminescence, and solid‐state impedance spectroscopies. The band gap and near‐band‐gap emission of 4.9% In‐doped BiVO4 nanoparticles are larger than those of the rest of the nanomaterials. The charge‐transfer resistance of 4.9% In‐doped BiVO4 is the least. In‐doping enhances visible‐light photocatalytic activity.  相似文献   

3.
Bi3+‐TiO2 photocatalysts were prepared by doping bismuth ion into the TiO2 structure in a sol‐gel process. The catalyst samples were then characterized by UV‐vis diffuse reflectance spectra (DRS), X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Rodamine‐B (RhB) was used in this study as a model chemical with the aim of organic pollutants control. The photocatalytic degradation of RhB demonstrated that an optimal loading of bismuth 0.7 at. % achieved the highest photodegradation rate, with the rate constant increasing by a factor of 3.89 over neat TiO2 (P25) under UV illumination (λ ≥ 320 nm). The degradation of p‐nitrobenzonic acid (pNBA) was also examined to prevent/preclude/exclude/ the photosensitization pathway. GC‐MS results show that pNBA can be effectively degraded and minerized to small molecules, such as quinone, acetic acid and formic acid.  相似文献   

4.
A visible‐light‐driven photocatalyst based on the well‐known cathode material of NASICON‐type Li2Ni2(MoO4)3 was prepared by a modified Pechini method. The sample was characterized by X‐ray diffraction, scanning electron microscope, transmission electron microscopy, and UV‐vis absorption spectrum. The average size of Li2Ni2(MoO4)3 particle is below 50 nm. NASICON nanoparticles Li2Ni2(MoO4)3 has an efficient absorption in the UV‐visible light wavelength region with a direct allowed electronic transition of 2.07 eV. The photocatalytic properties of Li2Ni2(MoO4)3 were evaluated by the photodegradation of methylene blue (MB). Li2Ni2(MoO4)3 has an efficient photocatalytic activity and could be a potential photocatalyst driven by visible‐light. The photocatalytic activity was discussed on the optical absorption and special hexagonal tunnel structure connected by optical active centers of MoO4 and NiO6 and its good conductivity.  相似文献   

5.
A novel visible‐light‐driven photocatalyst of Mo‐doped LiInO2 nanocomposite was successfully synthesized through a sol‐gel method. The effect of Mo‐doping concentrations on the microstructures and properties of LiInO2 was characterized by X‐ray diffraction, scanning electron microscope, X‐ray photoelectron spectroscopy, photoluminescence, and ultraviolet‐visible absorption spectra. The photocatalytic properties of the as‐prepared samples were evaluated by the photocatalytic degradation of methylene blue (MB) dye under visible‐light irradiation. The results demonstrated that the photocatalytic activity of 6% Mo‐LiInO2 reached to 98.6%, which was much higher than that of the undoped photocatalyst LiInO2 (only 46.8%). The enhanced photocatalytic activity is ascribed to Mo‐doping strategy. The holes play an important role in the process of the photodegradation of MB. The superior photocatalytic activity of the as‐prepared Mo‐LiInO2 nanocomposites suggests a potential application for organic dye degradation of wastewater remediation. This work provides a further understanding on tailoring the band structure of semiconductor photocatalyst for enhancing visible‐light absorption and promoting electron‐hole separation by Mo‐doping strategy.  相似文献   

6.
Nondoped and 5.0 mol% Eu3+‐doped vanadate garnets Ca5Mg4(VO4)6, NaCa2Mg2[VO4]3, KCa2Mg2[VO4]3, and NaSr2Mg2[VO4]3 were synthesized by solid‐state reactions. The formation of single‐phase compound with garnet structure is confirmed by X‐ray diffraction. The photoluminescence (PL) and PL excitation (PLE) spectra are investigated together with color coordinates. The luminescence process is discussed on the charge‐transfer transitions in [VO4]3? ions and the crystal structure. The PL quantum efficiencies (QE) are measured for nondoped and Eu3+‐doped samples. The Eu3+‐doped samples have higher QEs than the corresponding nondoped ones although the energy transfer occurs from [VO4]3? to Eu3+. Broad emission band due to [VO4]3? with intense sharp lines due to Eu3+, which gives white color, is observed in Eu3+‐doped NaCa2Mg2[VO4]3 and NaSr2Mg2[VO4]3 under excitation with UV light. These materials are suggested to be useful for lighting under the excitation with near‐UV LED.  相似文献   

7.
Rare‐earth‐free phosphors based on vanadate compounds were investigated, where the vanadates included chloride vanadates (MII2VO4Cl), pyrovanadates (MII2V2O7), orthovanadates (MII3(VO4)2) with divalent cations MII of Mg, Sr, Ba, and Zn, and oxofluorovanadates (AIVOF4) with an alkali metal AI. A chloride pyrolysis method and a liquid phase precipitation method were proposed for preparing the chloride vanadates and pyro‐ and orthovanadates, respectively. These vanadate compounds showed self‐activated photoluminescence (PL) based on the VO4 clusters against the ultraviolet (UV) light irradiation. The colors of PL covered almost the whole visible‐light region from blue to yellow as Sr2VO4Cl (deep blue), Ca2VO4Cl (sky blue), Ba2V2O7 (green), Sr2V2O7 (yellowish green), Zn3(VO4)2 (yellow), and Mg3(VO4)2 (yellow). A correlation was suggested from these compounds between the luminescent colors and the structural feature as the longer V–O distances in the VO4 tetrahedra in the crystal structures led to the longer wavelength in PL. This seemed to be also applicable for the oxofluorovanadates AIVOF4 (AI = K and Cs) which contain the VOF4 polyhedra with one O2? ion and four F ions as the ligands, as they exhibited the reddish PL.  相似文献   

8.
Bi3TiNbO9 nanoparticles with an acceptor dopant of Ni2+ ion were prepared by the conventional Pechini sol–gel synthesis. The X‐ray polycrystalline diffraction measurements (XRD) and the Rietveld refinements of Bi3TiNbO9 samples were completed. The surface property of Bi3TiNbO9 nanoparticles was investigated by transmission electron microscope, scanning electron microscope), and N2 adsorption–desorption isotherms. Bi3TiNbO9 nanoparticles showed an optical band gap with energy of 3.1 eV in the UV region. While the Ni2+‐doping could greatly reduce the band energy of Bi3TiNbO9:xNi2+ nanoparticles to 2.79 eV (x = 0.05) and 2.61 eV (x = 0.1). This indicates that the Ni‐doped samples could be excited by UV–visible light. The photocatalytic abilities were tested by the photodegradation on methylene blue solution (MB) and phenol solutions excited by visible light. Accordingly, the photocatalytic activity was improved by the Ni‐doping in B‐sites in this Aurivillius‐type structure. The results concluded that Bi3TiNbO9:Ni2+ would be a possible candidate as a visible light‐driven photocatalyst. The effective photocatalysis was discussed on the structure characteristic and experiment such as polarized Aurivillius (Bi2O2)2+ layers, luminescence, and decay lifetimes, etc.  相似文献   

9.
The ZrO2‐MgO nanocomposites were synthesized using a new sol‐gel method with sucrose and tartaric acid as a gel agent. The samples were characterized by thermal analysis (TG/DTA), X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy‐dispersive X‐ray mapping (EDX mapping), and Ultraviolet‐visible spectroscopy (UV‐vis). The results showed that the cubic phase of ZrO2‐MgO was formed in the presence of both gel agents. The average particle size of the samples synthesized with sucrose was lower (30 nm) than that of tartaric acid (50 nm). Finally, the formation mechanism and the optical properties of zirconia‐magnesia have been discussed.  相似文献   

10.
In this article, we report on electrostatically self‐assembled thin films prepared by the alternative immersion of quartz‐coated and indium tin oxide coated glass substrates in aqueous solutions of a copolymer of poly(4‐styrenesulfonic acid‐co‐maleic acid) (PSSMA) and a hemicyanine of (E)?1,1′‐(propane‐1,3‐diyl)bis{4‐[4‐(dimethylamino)styryl]pyridinium} bromide (H3Br2). The films were studied by means of ultraviolet–visible absorption and X‐ray photoelectron spectroscopies, scanning electron microscopy, and photoelectrochemical measurements. When irradiated with white light, the PSSMA/H3 monolayer film gave a stable cathodic photocurrent. The effects of the applied bias voltages, layer numbers of the (PSSMA/H3)n films (where n stands for the number of bilayer films on both sides of the substrates), light intensities, pH value, and electron acceptor on the photocurrent generation of the (PSSMA/H3)n film were examined. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39871.  相似文献   

11.
Poly(o‐methyl‐acrylamideyl‐benzoic acid)‐ZnS (P(o‐MAABA)‐ZnS) nanocomposites have been prepared and characterized. The resultant P(o‐MAABA)‐ZnS nanocomposites in solution show two emissions in the purple‐light area (370 nm) and in the blue‐light area (425 nm), which are assigned to the polymer and ZnS nanoparticles, respectively. The coordination between the polymer and Zn2+ and the surface chemical composition has been studied by Infrared spectroscopy and X‐ray photoelectron spectroscopy (XPS). The particle size of ZnS nanoparticles was homogeneous and the average size was 3.8 nm, which were characterized by UV absorption spectrum and X‐ray Diffraction. The P(o‐MAABA)‐ZnS composites displays good film formability and the films also show two emissions in 370 and 425 nm. After doped with Tb3+, there was effective energy transfer from ZnS nanoparticles to Tb3+. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Often, addition of BiMO3 to BaTiO3 (BT) leads to improvement in resistivity with a simultaneous shift to n‐type conduction from p‐type for BT. In considering one specific BiMO3 composition, that is, Bi(Zn1/2Ti1/2)O3 (BZT), several prospective candidates for the origin of this n‐type behavior in BT‐BZT were studied—loss of volatile cations, oxygen vacancies, bismuth present in multiple valence states and precipitation of secondary phases. Combined x‐ray and neutron diffraction, prompt gamma neutron activation analysis and electron energy loss spectroscopy suggested much higher oxygen vacancy concentration in BT‐BZT ceramics (>4%) as compared to BT alone. X‐ray photoelectron spectroscopy and x‐ray absorption spectroscopy did not suggest the presence of bismuth in multiple valence states. At the same time, using transmission electron microscopy, some minor secondary phases were observed, whose compositions were such that they could result in effective donor doping in BT‐BZT ceramics. Using experimentally determined thermodynamic parameters for BT and slopes of Kröger‐Vink plots, it has been suggested that an ionic compensation mechanism is prevalent in these ceramics instead of electronic compensation. These ionic defects have an effect of shifting the conductivity minimum in the Kröger‐Vink plots to higher oxygen partial pressure values in BT‐BZT ceramics as compared to BT, resulting in a significantly higher resistivity values in air atmosphere and n‐type behavior. This provides an important tool to tailor transport properties and defects in BT‐BiMO3 ceramics, to make them better suited for dielectric or other applications.  相似文献   

13.
We have successfully synthesized polyacrylonitrile (PAN) nanofibers impregnated with Ag nanoparticles by electrospinning method at room temperature. Briefly, the PAN‐Ag composite nanofibers were prepared by electrospinning PAN (10% w/v) in dimethyl formamide (DMF) solvent containing silver nitrate (AgNO3) in the amounts of 8% by weight of PAN. The silver ions were reduced into silver particles in three different methods i.e., by refluxing the solution before electrospinning, treating with sodium borohydride (NaBH4), as reducing agent, and heating the prepared composite nanofibers at 160°C. The prepared PAN nanofibers functionalized with Ag nanoparticles were characterized by field emission scanning electron microscopy (FESEM), SEM elemental detection X‐ray analysis (SEM‐EDAX), transmission electron microscopy (TEM), and ultraviolet‐visible spectroscopy (UV‐VIS) analytical techniques. UV‐VIS spectra analysis showed distinct absorption band at 410 nm, suggesting the formation of Ag nanoparticles. TEM micrographs confirmed homogeneous dispersion of Ag nanoparticles on the surface of PAN nanofibers, and particle diameter was found to be 5–15 nm. It was found that all the three electrospun PAN‐Ag composite nanofibers showed strong antibacterial activity toward both gram positive and gram negative bacteria. However, the antibacterial activity of PAN‐Ag composite nanofibers membrane prepared by refluxed method was most prominent against S. aureus bacteria. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
BACKGROUND: Unlike many water pollution applications, visible‐light‐driven photocatalysis of gas‐phase pollutants has been reported only rarely. The present study was performed to investigate the feasibility of applying S‐doped visible‐light‐induced TiO2 to treat gas‐phase aromatic hydrocarbons, using a continuous air‐flow annular‐type reactor. RESULTS: The prepared S‐enhanced TiO2 powders, along with a commercially available TiO2 powder (Degussa P‐25), were characterized using diffuse reflectance UV‐VIS‐NIR spectrophotometry, Fourier transform infrared (FTIR) spectrophotometry, X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetry (TG) analyses. A photocatalytic activity test exhibited an increasing trend in degradation reaction rates with increase in flow rate but a decreasing trend in terms of degradation efficiencies. Several experimental conditions induced reasonably high decomposition efficiencies with respect to toluene, ethyl benzene and o,m,p‐xylenes (close to or above 90%), although benzene exhibited a somewhat lower decomposition efficiency. CONCLUSIONS: The S‐doped TiO2 and undoped P25 TiO2 powders exhibited different catalyst characteristics. The results demonstrate that an annular‐type reactor coated with visible‐light‐activated S‐doped TiO2 can serve as an effective tool to treat gas‐phase aromatic hydrocarbon streams. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
The new red‐emitting phosphors of Eu3+‐doped triple orthovanadates NaALa(VO4)2 (= Ca, Sr, Ba) were prepared by the high‐temperature solid‐state reaction. The formation of single phase compound with isostructural structure of Ba3(VO4)2 was verified through X‐ray diffraction (XRD) studies. The photoluminescence excitation and emission spectra, the fluorescence decay curves and the dependence of luminescence intensity on doping level were investigated. The phosphor can be efficiently excited by near UV and blue light to realize an intense red luminescence (613 nm) corresponding to the electric dipole transition 5D07F2 of Eu3+ ions. Their potential applications as red‐emitting phosphors for solid‐state lighting were evaluated in comparison with the Eu3+‐doped lanthanum orthovanadate LaVO4 and other reported references. The luminescence was discussed in detail on the base of the crystal structures. The luminescence thermal stability on temperature was investigated and the thermal activated energy was calculated. The phosphors can be suggested to be a potential red‐emitting phosphor for the application on white LEDs under irradiation of near‐UV or blue chips.  相似文献   

16.
N‐Doped TiO2 photocatalysts were prepared by a hydrothermal method with tetra‐n‐butyl titanate (TTNB) and triethanolamine as precursors. The obtained samples were characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), and UV‐visible diffuse reflectance spectra (DRS), respectively. Photocatalytic activities of the anatase products were investigated on the degradation of methyl orange (MO). The incorporation of nitrogen impurity in anatase TiO2 was studied by the first‐principles calculations based on the density functional theory (DFT). The calculated electronic band structures for substitutional and interstitial N‐doped TiO2 indicated the formation of localized states in the band gap, which lied above the valence band. Excitation from the impurity states of N 2p to the conduction band could account for the optical absorption edge shift toward the lower energies. It was consistent with the experimentally observed absorption of N‐doped samples in the visible region.  相似文献   

17.
The polypyrrole (PPy) and polypyrrole‐Au (PPy‐Au) nanocomposite films have been sonoelectrochemically synthesized on St‐12 steel electrodes using the galvanostatic technique. Experimental design according to the Taguchi method has been applied to optimize the factors on the synthesis of PPy‐Au nanocomposite coating. Three factors were used to design an orthogonal array L9: Synthesis time (t), Current density (I), and Concentration of HAuCl4 (C). The synthesized Au nanoparticles during polymerization were characterized by Ultraviolet–visible (UV‐visible) spectroscopy. Characterization of the surfaces was done by scanning electron microscope (SEM), energy dispersive X‐ray spectrum (EDX), and atomic force microscope (AFM). The scanning electron microscopy (SEM) image of PPy shows a smooth surface while PPy‐Au nanocomposite film has a compact morphology. Moreover, energy dispersive X‐ray spectrum (EDX) is evidence for the incorporation of Au nanoparticles. The corrosion protection of coatings was investigated by open circuit potential (OCP) time trends, potentiodynamic polarization technique, and electrochemical impedance spectroscopy (EIS) in a NaCl 3.5% solution. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41087.  相似文献   

18.
A novel series of visible light‐sensitive Cu2+, Sn2+, and Ag+‐substituted LiMg0.5Ti0.5O2 photocatalysts were synthesized by a facile ion‐exchange method and characterized by XRD, UV‐Vis diffuse reflectance spectra, scanning electron microscopy equipped with an X‐ray energy‐dispersive spectroscopy, Brunauer‐Emmett‐Teller surface area, inductively coupled plasma mass spectrometry, and thermal gravimetric analysis. The characterization results showed that morphology, crystallite size, and surface areas of the ion‐exchange products were almost similar to the parent compound. Absorption edges of Ag+‐doped (AMT), Cu2+‐doped (CMT), and Sn2+‐doped (SMT) samples were red shifted remarkably into the visible light region while parent LiMg0.5Ti0.5O2 (LMT) was UV active. Photocatalytic activity of these samples was evaluated by studying the degradation of methylene blue and nitro benzene under visible light irradiation and the stability of all samples during photocatalytic experiment was also investigated. The activity of all photocatalysts was ranked accordingly as SMT ≥ AMT > CMT > LMT. The correlation between photocatalytic properties, band gap energy, rate of recombination of the charge carriers, and amount of OH radicals generated during photocatalysis and the underlying reasons were discussed.  相似文献   

19.
Rapid removal of the organic methylene blue (MB) dye was achieved by simple stirring of highly porous Ni–Fe–Cr–Al metal foam coated with bismuth vanadate (BiVO4). The metal foam was dip‐coated with the BiVO4 solution precursor and annealed for an hour, through which the foam surface was decorated with the highly porous nanostructure, yielding high adsorptivity. This bismuth‐decorated metal foam was characterized by X‐ray diffraction, X‐ray photoelectron, and scanning electron microscopy to elucidate its physical, chemical, and morphological properties. The modeled pollutant, MB, was stirred with the metal foam both in darkness and in light. Complete decolorization was observed for both of these conditions, which indicates that adsorption dominates over photocatalysis; we found that photocatalysis contributed to less than 10% of the purification process. We also demonstrated that it would be possible to recycle the metal foam as many as 20 times, beyond which its purification capability degrades. However, the MB residues on the foam can be removed by simple annealing; thus, in theory the foam can be recycled indefinitely.  相似文献   

20.
BACKGROUND: This research investigated the effect of platinum (Pt) on the reactivity of tungsten oxide (WO3) for the visible light photocatalytic oxidation of dyes. RESULTS: Nanocrystalline tungsten oxide (WO3) photocatalysts were synthesised by a sol‐gel process and employed for the photocatalytic degradation of Methyl Orange under visible light. For comparison commercial bulk WO3 materials were also studied for the same reaction. These materials were fully characterised using X‐ray diffraction (XRD), UV‐visible diffuse reflection spectroscopy and transmission electron microscopy (TEM). The photocatalytic oxidation of iso‐propanol was used as a model reaction to follow the concomitant reduction of molecular oxygen. No reactions occured in the absence of platinum, which is an essential co‐catalyst for the multi‐electron reduction of oxygen. The platinised WO3 catalysts were stable for multiple oxidation–reduction cycles. The results from the catalytic activity measurements showed that platinised nanocrystalline WO3 is a superior oxidation photocatalyst when compared with bulk WO3. Methyl Orange was completely decolourised in 4 h. CONCLUSIONS: The enhanced performance of nanocrystalline Pt‐WO3 is attributed to improved charge separation in the nanosized photocatalyst. Platinum is an essential co‐catalyst to reduce oxygen. This photocatalyst could be applied to the treatment of organic pollutants in wastewater, with the advantage of using visible light compared with the widely studied TiO2, which requires UV light. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号