首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Nanocrystalline SiO2 stishovite has a fracture toughness higher than 10 MPa m1/2 due to the toughening mechanism by fracture-induced amorphization. In order to identify other toughening mechanisms which may operate simultaneously, we evaluated effect of crack deflection on fracture toughness. The median deflection angle of nanocrystalline stishovite was lower than polycrystalline ceramics such as silicon nitride and Y-TZP. While the crack deflection can contribute to fracture toughness to some extent, it cannot be the major origin of high fracture toughness of nanocrystalline stishovite. We discussed also the role of grain bridging from the relation between the fracture toughness and grain size.  相似文献   

2.
To investigate the effects of SiC on microstructure, hardness, and fracture toughness, 0, 10, 20, and 30 vol% SiC were added to HfB2 and sintered by SPS. Upon adding SiC to 30 vol%, relative density increased about 4%; but HfB2 grain growth had a minimum at 20 vol% SiC. This may be due to grain boundary silicate glass, responsible for surface oxide wash out, enriched in SiO2 with higher fraction of SiC. By SiO2 enrichment, the glass viscosity increased and higher HfO2 remained unsolved which subsequently lead to higher grain growth. Hardness has increased from about 13 to 15 GPa by SiC introduction with no sensible variation with SiC increase. Residual stress measurements by Rietveld method indicated high levels of tensile residual stresses in the HfB2 Matrix. Despite the peak residual stress value at 20 vol% SiC, fracture toughness of this sample was the highest (6.43 MPa m0.5) which implied that fracture toughness is mainly a grain size function. Tracking crack trajectory showed a mainly trans-granular fracture, but grain boundaries imposed a partial deflection on the crack pathway. SiC had a higher percentage in fracture surface images than the cross-section which implied a weak crack deflection.  相似文献   

3.
《Ceramics International》2023,49(18):29709-29718
Mechanical alloying and spark plasma sintering (SPS) were used to prepare dense SiAlCN ceramic and SiAlCN ceramic toughened by SiC whiskers (SiCw) or graphene nanoplatelets (GNPs). The influences of different reinforcements on the microstructure and fracture toughness were investigated. The SiAlCN ceramic exhibited a fracture toughness of 4.4 MPa m1/2 and the fracture characteristics of grain bridging, alternative intergranular and transgranular fracture. The fracture toughness of SiCw/SiAlCN ceramic increased to 5.8 MPa m1/2 and toughening mechanisms were crack deflection, SiCw bridging and pull-out. The fracture toughness of GNP/SiAlCN ceramic increased significantly, which was up to 6.6 MPa m1/2. GNPs played an important role in grain refinement, which resulted in the smallest grain size. Multiple toughening mechanisms, including crack deflection, crack branch, GNP bridging and pull-out could be found. The better toughening effect could be attributed to the larger specific surface area of GNPs and the appropriate interface bonding between GNPs and matrix.  相似文献   

4.
The mode 1 interlaminar fracture toughness of biaxial (±45°) noncrimp warp‐knitted fabric composites made of glass/PP commingled yarn was investigated. The crack propagation along the warp and weft directions, respectively, was considered for the composites cooled at two different rates during laminate molding. The interlaminar fracture toughness was characterized by determining the critical strain energy release rate (GIC) of initiation and propagation measured from the double cantilever beam tests. In the case of a slow cooling rate (1°C/min), most specimens possess pure interlaminar crack propagation and direction‐independence characteristics. Nevertheless, the high‐cooled (10°C/min) specimens fractured in both directions suffer extensive intraply damage (crack branching, debonding, and bridging of 45°‐oriented interfacial yarns) and knit thread breakage, leading to GIC of propagation two times higher than that of the slow‐cooled specimens, and the clear difference in the GIC values of initiation between the two directions may be due to the contribution of the knit thread breakage to the fracture energy. POLYM. COMPOS., 2008 © 2007 Society of Plastics Engineers  相似文献   

5.
The use of interlaminar fracture tests to measure the delamination resistance of unidirectional composite laminates is now widespread. However, because of the frequent occurrence of fiber bridging and multiple cracking during the tests, it leads to artificially high values of delamination resistance, which will not represent the behavior of the laminates. Initiation fracture from the crack starter, on the other hand, does not involve bridging, and should be more representative of the delamination resistance of the composite laminates. Since there is some uncertainty involved in determining the initiation value of delamination resistance in mode I tests in the literature, a power law of the form GIC= A · Δ ab (where GIC is mode I interlaminar fracture toughness and Δ a is delamination growth) is presented in this paper to determine initiation value of mode I interlaminar fracture toughness. It is found that initiation values of the mode I interlaminar fracture toughness. GICini, can be defined as the GIC value at which 1 mm of delamination from the crack starter has occurred. Examples of initiation values determined by this method are given for both carbon fiber reinforced thermoplastic and thermosetting polymers.  相似文献   

6.
《Ceramics International》2017,43(11):8202-8207
Effects of HfC addition on the microstructures and mechanical properties of TiN-based and TiB2-based ceramic tool materials have been investigated. Their pore number decreased gradually and relative densities increased progressively when the HfC content increased from 15 wt% to 25 wt%. The achieved high relative densities to some extent derived from the high sintering pressure and the metal phases. HfC grains of about 1 µm evenly dispersed in these materials. Both TiN and TiB2 grains become smaller with increasing HfC content from 15 wt% to 25 wt%, which indicated that HfC additive can inhibit TiN grain and TiB2 grain growth, leading to the formation of a fine microstructure advantageous to improve flexural strength. Especially, TiB2-HfC ceramics exhibited the typical core-rim structure that can enhance flexural strength and fracture toughness. The toughening mechanisms of TiB2-HfC ceramics mainly included the pullout of HfC grain, crack deflection, crack bridging, transgranular fracture and the core-rim structure, while the toughening mechanisms of TiN-HfC ceramics mainly included pullout of HfC grain, fine grain, crack deflection and crack bridging. Besides, HfC hardness had an important influence on the hardness of these materials. Higher HfC content increased Vickers hardness of TiN-HfC composite, but lowered Vickers hardness of TiB2-HfC composite, being HfC hardness higher than for TiN while HfC hardness is lower than for TiB2. The decrease of fracture toughness of TiN-HfC ceramic tool materials with the increase of HfC content was attributed to the formation of a weaker interface strength.  相似文献   

7.
《Ceramics International》2017,43(13):10224-10230
Whiskers and nanoparticles are usually used as reinforcing additives of ceramic composite materials due to the synergistically toughening and strengthening mechanisms. In this paper, the effects of TiC nanoparticle content, particle size and preparation process on the mechanical properties of hot pressed Al2O3-SiCw ceramic tool materials were investigated. The results showed that the Vickers hardness and fracture toughness of the materials increased with the increasing of TiC content. The optimized flexural strength was obtained with TiC content of 4 vol% and particle size of 40 nm. The particle size has been found to have a great influence on flexural strength and small influence on hardness and fracture toughness. It was concluded that the flexural strength increased remarkably with the decreasing of the TiC particle size, which was resulted from the improved density and refined grain size of the composite material due to the dispersion of the smaller TiC particle size. SEM micrographs of fracture surface showed the whiskers to be mainly distributed along the direction perpendicular to the hot-pressing direction. The fracture toughness was improved by whisker crack bridging, crack deflection and whisker pullout; the TiC nanoparticles in Al2O3 grains caused transgranular fracture and crack deflection, which improved the flexural strength and fracture toughness with whiskers synergistically. Uniaxial hot-pressing of SiC whisker reinforced Al2O3 ceramic composites resulted in the anisotropy of whiskers’ distribution, which led to crack propagation differences between lateral crack and radical crack.  相似文献   

8.
Local fracture toughness gives us useful and important information to understand and improve mechanical properties of bulk ceramics. In this study, the local fracture toughness of silicon nitride (Si3N4) ceramics was directly measured using single‐edge notched microcantilever beam specimens prepared by the focused ion beam technique. The measured fracture toughness of grain boundary of the Si3N4 ceramics is higher than the fracture toughness of SiAlON glass, which exists in the grain boundaries of Si3N4 ceramics. It is also shown that the fracture toughness of grain boundary depends on the rare earth oxide added as a sintering aid, which is expected in terms of the difference in the grain‐boundary structure. The fracture toughness of a single β‐Si3N4 grains is higher than the grain‐boundary fracture toughness. It was also higher than the value estimated from ab initio calculations and surface energy, which means that any dissipative energy should be included in the fracture toughness of a grain in spite of the brittle fracture in Si3N4. The fracture toughness of polycrystals of Si3N4 ceramics measured using single‐edge notched microcantilever beam specimens is intermediate between those of grains and grain boundaries, and it agrees with the estimated initial value of the Rcurve, KI0, in Si3N4 ceramics.  相似文献   

9.
Aluminium oxynitride (Alon) exhibits excellent stability, high rigidity and good thermal shock resistance, but it has relatively low strength and poor fracture toughness. The aim of this investigation was to develop a new type of zirconium nitride (ZrN) nano-particulate reinforced Alon composites via a change of ZrO2 nano-particles during sintering. A reduction of porosity and grain size was observed in the composite. With increasing amount of ZrN nano-particles up to 2.7%, the relative density, hardness, Young's modulus, flexural strength, and fracture toughness all increased. When the ZrN nano-particles exceeded 2.7%, while the flexural strength and fracture toughness decreased slightly, the density, hardness and Young's modulus continued to increase. Different toughening mechanisms including crack bridging, crack branching and crack deflection were observed, thus effectively increasing the crack propagation resistance and leading to a considerable improvement in the flexural strength and fracture toughness of the composites.  相似文献   

10.
The impact strength to stiffness balance of a toughened polypropylene copolymer was modified through the addition of mineral fillers. The stiffness was improved over the base resin value for all formulations. However, the impact strength exhibited complex behavior. The fracture toughness Gc calculated using the linear elastic fracture mechanics theory was indicative of the materials resistance to crack propagation. The Gc values were modified significantly with the addition of fillers and for some formulations was greater than the base resin value. The LEFM analysis indicates that this is due to an increase in the damage zone size rp where the energy absorbing mechanisms are concentrated. However, the specific energy absorbed per unit volume decreased with the addition of fillers. The total energy to fracture measured using unnotched samples was indicative of crack initiation and crack propagation energies. This upper bound value decreased for all formulations indicating a reduction in the crack initiation resistance, in the presence of stress concentrating heterogeneities in the filled systems.  相似文献   

11.
In this study, Si3N4/Si2N2O composite ceramics prepared by hot pressing were used as an example, and the material fracture morphology and fracture mechanism were analyzed. Based on the formula of fracture toughness measured by an indentation method, a quantitative computation method was proposed to determine the toughened effect of ceramic materials resulting from the crack deflection by the second phase. The grain size and sintering density are increased with the increase of sintering temperature. The toughening effects resulting from the crack deflection is increased, and the main mode of fracture is transformed into the transgranular fracture. The Si2N2O grains can play a role in the toughening process because these grains can hinder the cracks extending along the radial direction. However, when the cracks extend in the axial direction, the toughening effect of Si2N2O grains is not obvious because of the internal stacking faults in the axial direction. The improved indentation method can quantitatively analyze the toughening effect of the second phase of composite ceramics, and the validity of this method are verified by comparing the fracture toughness of Si3N4/Si2N2O and fine grained β- Si3N4 ceramics.  相似文献   

12.
B.B. Johnsen  A.C. Taylor 《Polymer》2005,46(18):7352-7369
Thermoplastic/epoxy blends were formed using an amine-cured epoxy polymer and a semi-crystalline thermoplastic: syndiotactic polystyrene (sPS). Complete phase-separation of the initially soluble sPS from the epoxy occurred via ‘reaction-induced phase-separation’ (RIPS) or via ‘crystallisation-induced phase-separation’ (CIPS), depending upon the thermal processing history employed. Dynamic mechanical thermal analysis showed that no sPS was retained dissolved in the epoxy polymer. For RIPS, at concentrations of sPS of up to 8 wt%, the sPS is present solely as spherical particles. However, macro phase-separation, giving a co-continuous microstructure, accompanied by local phase-inversion, dominates the RIPS blends containing more than 8 wt% sPS. In the CIPS blends, the sPS is present as spherulitic particles, and this microstructure does not change over the range of sPS concentrations employed, i.e. from 1 to 12 wt% sPS. The pure epoxy polymer was very brittle with a value of fracture energy, GIc, of about 175 J/m2. However, the addition of the sPS significantly increases the value of GIc, though the toughness of the RIPS and CIPS blends differs markedly. For the RIPS blends, there is a steady increase in the toughness with increasing content of sPS and an apparent maximum value of GIc of about 810 J/m2 is obtained for 8-10 wt% sPS. On the other hand, the measured toughness of the CIPS blends increases relatively slowly with the concentration of sPS, and a maximum plateau value of only about 350 J/m2 was measured in the range of 8-12 wt% sPS. The relationships between the microstructure of the RIPS and CIPS sPS/epoxy blends and the measured fracture energies are discussed. Further, from scanning electron microscopy studies of the fracture surfaces and optical microscopy of the damage zone around the crack tip, the nature of the micromechanisms responsible for the increases in toughness of the blends are identified. For the RIPS blends, (i) debonding of the sPS particles, followed by (ii) plastic void growth of the epoxy matrix are the major toughening micromechanisms. The increase in toughness due to such micromechanisms is successfully predicted theoretically using an analytical model. In the case of the CIPS blends, the increase in the value of GIc results from (i) crack deflection and (ii) microcracking and crack bifurcation.  相似文献   

13.
The Crack Rail Shear (CRS) specimen is a proposed test method to characterize the interlaminar Mode III critical strain energy release rate (GIIIc) of continuous fiber-reinforced composite materials. The specimen utilizes the two rail shear test fixture and contains embedded Kapton film between designated plies to provide a starter crack for subsequent fracture testing. Analytical expressions for specimen compliance and GIII are based upon Strength of Materials (SM) principles. The model identifies important material and geometric parameters and provides a simple data reduction scheme. A quasi-three-dimensional, linear elastic finite element stress analysis verifies the purity of the Mode III fracture state and identifies admissible crack lengths to be used in the experimental study. A fully three-dimensional linear elastic finite element analysis of the CRS is employed to investigate the influence of edge effects on the fracture state for the finite length sample. Results based upon a uniform crack extension indicate a small region of mixed mode behavior at traction free edges which decay to a pure Model III fracture state in the interior of the sample. Furthermore, the GIII distribution along the crack front decreases at the free edges from a maximum plateau region in the interior. The three-dimensional analysis allows edge effects to be minimized by selecting appropriate specimen lengths. Compliance and strain energy release rates are in good agreement with the SM model. An experimental program was performed to measure GIIIc of two graphite epoxy systems. GIIIc results for AS4/3501-6 were found to be 1.6 times the Mode II fracture toughness, while IM7/8551-7 exhibited equivalent Mode II and Mode III fracture toughnesses. Mode III fracture surfaces revealed microstructural deformations characteristic of Mode II fracture.  相似文献   

14.
《Ceramics International》2022,48(15):21370-21377
A laminated silicon nitride (Si3N4) ceramic material with a hollow, oriented, one-dimensional microstructure was successfully prepared based on the tape casting and sacrificial template method. The results show that hollow, oriented, one-dimensional microstructures can effectively induce crack deflection. Different arrangements of the structural design layer and dense layer will have different effects on the material. In particular, bulks with a single-layer orthogonal arrangement of the structural design layer possess high toughness and obvious crack deflection during the fracture process. A kind of multiscale crack deflection mode was realized. Compared with the fracture toughness of the monolithic Si3N4 ceramic bulk (5.55 MPa m1/2), the fracture toughness can reach 8.73 MPa m1/2, and the flexural strength can still reach 391.47 MPa with only a slight decrease.  相似文献   

15.
A nano-scale crack tip around 500 nm wide introduced by femtosecond laser still affects the accuracy of fracture toughness KIC measurements of 3Y-TZP zirconia ceramics with average grain size G from 200 to 500 nm. A simple formula was proposed to estimate the additive effect of crack-tip damage zones from an infinitely sharp crack to a nano-scale blunt notch. The error in fracture toughness measurements is less than 8 % if the nano-scale crack-tip width < 0.5·G. The intrinsic KIC can be deduced from the simple formula if the nano-scale crack tip > 0.5·G. This study shows the same KIC was deduced from two different sets of 3Y-TZP measurements with nano- and micro-scale notches of 500 nm and 18 µm wide. Furthermore, the simple formula specifies the relation between the fracture toughness KIC and intrinsic strength ft via grain size G, which means KIC can also be estimated from ft and G without testing pre-cracked specimens. KIC values of 3Y-TZP from specimens with and without pre-cracks were compared.  相似文献   

16.
《Ceramics International》2016,42(5):6072-6079
Due to excellent chemical stability, high rigidity, superior corrosion and wear resistance, aluminum oxynitride (AlON) has been considered as one of most promising candidate ceramic materials in high-performance structural, advanced abrasives and refractory fields. However, it usually exhibited relatively low flexural strength and poor fracture toughness. The study is aimed to develop silicon carbide (SiC) and zirconium nitride (ZrN) nano-particulate reinforced AlON composites with improved mechanical properties and fracture resistance via a hot-press sintering process. It was found that the addition of ZrO2 nanoparticles would be transformed into ZrN during sintering. Due to the pinning effect of SiC and ZrN nano-particles positioned at grain boundaries of micro-sized AlON particles, the presence of SiC and ZrN nano-particles resulted in the reduction of both porosity and grain size, and a change of fracture mode from intergranular cracking in AlON to intragranular cracking in composites. With presence of 8 wt% SiC and 5.2 wt% ZrN nano-particles, the relative density, microhardness, Young’s modulus, flexural strength and fracture toughness increased. Different toughening mechanisms including crack bridging, crack branching and crack deflection were observed, thus effectively increasing the crack propagation resistance and leading to a considerable improvement in flexural strength and fracture toughness.  相似文献   

17.
A type of multidimensional graded ceramic tool materials (MGTMs) was designed and fabricated by vacuum hot-pressing sintering technology. The microstructure and compositional distribution of tool simultaneously changed in two different directions. The tool-chip and tool-workpiece contact regions were designed to have high hardness, and metal phases Mo and Ni were added to produce a gradual increase in toughness from the outer layer to core layer. The effect of orientation angle, thickness ratio and sintering parameters on the mechanical properties and microstructure were investigated. The experimental results showed that the composites, sintered at 1700 °C for 15 min, with the orientation angle of 30° and a thickness ratio of 0.4, had the optimal comprehensive mechanical properties. In addition, the crack propagation paths were observed to analyze the toughening mechanisms for the multidimensional graded ceramic tool materials. It was found that there is a crack resistance behavior when the crack extended from the outer layer to transition layer. The effect of the angle between the crack and graded interface on crack propagation paths was also investigated and the results indicated that the small angle was favorable for the crack deflection when the cracks passed through the graded interface. The residual thermal stress contributed to the occurrence of the crack bridging and transgranular fracture inside the Al2O3 grains, while the intergranular fracture and crack deflection were observed around the TiC grains.  相似文献   

18.
ABSTRACT

The graphene/ZrO2 composites were fabricated by impregnating graphene dispersion into the ZrO2 ceramic matrix and sintered by microwave, and the microstructure and mechanical properties were investigated. The results showed that the graphene was well dispersed in the ceramic matrix and refined the grain size. The fracture toughness reached 8.62?MPa?m1/2, confirmed by single-edge notched beam, which was 42% higher than that of the pure ZrO2. Also, the toughening mechanisms were investigated by micro-hardness testing and showed that a combination of crack deflection, micro-crack and crack bridging increased the fracture toughness.  相似文献   

19.
Shiqiang Deng  Lin Ye  Jingshen Wu 《Polymer》2008,49(23):5119-5127
An experimental attempt was made to characterize the fracture behaviour of epoxies modified by halloysite nanotubes and to investigate toughening mechanisms with nanoparticles other than carbon nanotubes (CNTs) and montmorillonite particles (MMTs). Halloysite-epoxy nanocomposites were prepared by mixing epoxy resin with halloysite particles (5 wt% and 10 wt%, respectively). It was found that halloysite nanoparticles, mainly nanotubes, are effective additives in increasing the fracture toughness of epoxy resins without sacrificing other properties such as strength, modulus and glass transition temperature. Indeed, there were also noticeable enhancements in strength and modulus for halloysite-epoxy nanocomposites because of the reinforcing effect of the halloysite nanotubes due to their large aspect ratios. Fracture toughness of the halloysite particle modified epoxies was markedly increased with the greatest improvement up to 50% in KIC and 127% in GIC. Increases in fracture toughness are mainly due to mechanisms such as crack bridging, crack deflection and plastic deformation of the epoxy around the halloysite particle clusters. Halloysite particle clusters can interact with cracks at the crack front, resisting the advance of the crack and resulting in an increase in fracture toughness.  相似文献   

20.
The effect of relative density on the hardness and fracture toughness of Al‐substituted cubic garnet Li6.19Al0.27La3Zr2O12 (LLZO) was investigated. Polycrystalline LLZO was made using solid‐state synthesis and hot‐pressing. The relative density was controlled by varying the densification time at fixed temperature (1050°C) and pressure (62 MPa). After hot‐pressing, the average grain size varied from approximately 2.7–3.7 μm for the 85% and 98% relative density samples, respectively. Examination of fracture surfaces revealed a transition from inter‐ to intragranular fracture as the relative density increased. The Vickers hardness increased with relative density up to 96%, above which the hardness was constant. At 98% relative density, the Vickers hardness was equal to the hardness measured by nanoindentation 9.1 GPa, which is estimated as the single‐crystal hardness value. An inverse correlation between relative density and fracture toughness was observed. The fracture toughness increased linearly from 0.97 to 2.37 MPa√m for the 98% and 85% relative density samples, respectively. It is suggested that crack deflection along grain boundaries can explain the increase in fracture toughness with decreasing relative density. It was also observed that the total ionic conductivity increased from 0.0094 to 0.34 mS/cm for the 85%–98% relative density samples, respectively. The results of this study suggest that the microstructure of LLZO must be optimized to maximize mechanical integrity and ionic conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号