首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glass additive BaO-SrO-TiO2-Al2O3-SiO2-BaF2 is employed to enhance the microstructures and energy storage properties of the Ba(Zr0.2Ti0.8)O3-0.15(Ba0.7Ca0.3)TiO3 ceramics. To clarify the energy storage mechanism, the charge transportation and polarization process are investigated by thermally simulated depolarization current (TSDC). The dielectric breakdown strength increases from 4.3?kV/mm to 10.8?kV/mm for BZT-0.15BCT ceramics with 11?wt% glass additives, indicating that glasses could refine the grain size, uniform the structure, and decrease defects. Due to the micro-domain region, dielectric relaxation behavior is observed with a broadened and reduced dielectric constant peak at a large dielectric constant of about 3000?at room temperature. The largest charge energy density of 1.45?J/cm3 and discharge density of 0.17?J/cm3 are achieved for BZT-0.15BCT glass ceramics with 7?wt% glass additives. TSDC results demonstrate that dipole origin movement and charge transportation have an important effect on the dielectric properties and dielectric breakdown strength, respectively, which are largely influenced by the defects distribution state at the interfaces. Moderate domain walls could restrain the defects to inhibit the charge transportation and are harmful for the dielectric properties inversely. To achieve excellent energy storage performance, moderate domain walls are compromise of slightly degrading dielectric properties and greatly improving dielectric breakdown strength.  相似文献   

2.
Ba0.4Sr0.6Zr0.15Ti0.85O3 ceramics with SrO–B2O3–SiO2 glass additives were prepared via the solid state reaction route. The effects of glass contents on the sintering behavior, dielectric properties, microstructures, and energy storage properties of BSZT ceramics were investigated. Dielectric breakdown strength of 22.4 kV/mm was achieved for BSZT ceramics with 20 wt% glass addition. Dielectric relaxation behavior was observed in dielectric loss versus temperature plots. In order to investigate the mechanism of dielectric breakdown performance, the relationship between dielectric breakdown strength and grain boundary barrier was studied by the measurements of breakdown strength and activation energy. A discharged energy density of 0.45 J/cm3 with an energy efficiency of 88.2% was achieved for BSZT ceramics with 5 wt% glass addition.  相似文献   

3.
Glass additive was employed to improve the microstructures and energy storage properties of barium titanate ceramics using liquid phase sintering technology. Microstructural observation indicated that the average grain size reduced obviously with increasing glass concentration. Also, the dielectric constant decreased and the dielectric breakdown strength increased as glass concentration increased. The increase in the breakdown strength with decreasing grain size was consistent with the well-known relationship for the mechanical failure. The activation energies of bulk grain and grain boundary as well as their differences were calculated using measured impedance values. Good inverse dependence of the dielectric breakdown strength on the difference between activation energies of bulk grain and grain boundary was obtained for the glass-added BaTiO3 ceramics. It was also found that the energy storage density of the ceramics increased gradually with increasing glass concentration. Possible effect of the interfacial polarization in degrading the energy storage property was discussed.  相似文献   

4.
The structural and dielectric properties were investigated in the La2O3 added glass‐ceramics based on complex niobates. With the addition of La2O3, the optimization of microstructure was observed which resulted in the improvement of breakdown strength for the glass‐ceramics. Besides, the dielectric constant was drastically enhanced because of the doping effect of La3+ in the A‐sites of both crystallographic structures. Due to the combined effects of both high breakdown strength and polarization difference, the maximum discharged energy density of 1.2 J/cm3 was achieved in the niobate glass‐ceramics with 2 mol% La2O3, suggesting dielectric glass‐ceramics of this composition could be the most attractive candidate for high‐energy density capacitors.  相似文献   

5.
For preparing fine-grained 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 lead-free ferroelectric ceramics, the precursor powders were synthesized via sol-gel method and calcined at various temperatures. The precursor powders calcined at 520 °C, 550 °C, and 600 °C exhibit mean grain sizes of 30 ± 4 nm, 54 ± 3 nm, and 78 ± 5 nm, respectively. By optimizing the synthesis parameters, the fine-grained ceramics with high relative densities (>97%) and mean grain size around 100 nm were prepared. The ferroelectric, dielectric, and piezoelectric behavior were investigated. The ceramics prepared using the different precursor powders show different piezoelectric, ferroelectric, and dielectric behavior. The ceramic calcined at 550 °C and sintered at 900 °C exhibits the breakdown strength higher than 85 kV/cm, which exhibits the maximum polarization of 38.4 ± 0.3 μC/cm2, remanent polarization of 20.6 ± 0.4 μC/cm2.  相似文献   

6.
Glass–ceramics capacitors have great application potential in pulsed power systems, due to ultrafast discharge speed and high dielectric breakdown strength (BDS). Here, lead-free niobate glass–ceramic dielectric materials were synthesized, and the effects of heat treatment temperature on the dielectric, ferroelectric, and energy storage properties of glass–ceramics were investigated comprehensively. The results exhibit that the dielectric permittivity first increases and then decreases as the crystallinity increases; however, the dielectric BDS diminishes. At the optimum crystallization temperature of 740°C, the maximum value of discharge energy density is 2.2 J/cm3 at 600 kV/cm, which is about 7.6 times that of mother glass. Furthermore, an ultrahigh power density of about 380.9 MW/cm3 and ultrafast discharge speed of about 11.2 ns were achieved simultaneously. Meanwhile, great thermal stability of charge–discharge property was verified in this glass–ceramics. According to PE loops and dielectric test result, a high dielectric constant (∼207) and low dielectric loss (<0.005) as well as high energy storage efficiency of about 94.9% were achieved for G740 sample. The previous results make the obtained glass–ceramic as potential candidates in dielectric capacitors.  相似文献   

7.
Barium titanate ceramic is frequently used as a ferroelectric material and can be applied in the pulse power field in energy storage devices. Its properties, including dielectric, ferroelectric, and energy storage properties, can be significantly improved through doping. In this work, we prepared a series of (1-x)Ba0.65Sr0.245Bi0.07TiO3-xZnO (x = 0.005, 0.01, 0.02, 0.03) lead-free bulk relaxor ferroelectric ceramics by a traditional die-pressing processing route. The uniformity of the grain sizes for these ceramics was improved, and the grains were refined when a certain amount of ZnO was introduced into BaTiO3-based ceramics. In addition, the breakdown strength was improved in the case where the relaxor behavior was not significantly improved. It should be noted that the sample doped with 0.02 mol Zn showed the maximum room-temperature storage density (1.51 J/cm3) at the largest electric field strength (210 kV/cm). At the same time, this ceramic exhibited good stability to temperature (60–150 °C) and frequency (10–100 Hz) variations, as well as fantastic fatigue resistance (10,000 charge-discharge cycles). This paper presents in-depth studies of the structure, morphology, electrical properties, and energy storage performance of ZnO-modified BaTiO3-based ceramics.  相似文献   

8.
The barium potassium niobate‐based glass‐ceramics with high energy‐storage density, high discharge efficiency, and fast discharge speed have been prepared. It was found that dielectric breakdown strength decreases when the crystallization temperature increases. Glass‐ceramics have high energy‐storage density up to 14.58 ± 1.14 J/cm3 with high breakdown strength of 2382 ± 92 kV/cm. Discharge energy density and discharge efficiency of glass‐ceramic capacitor were achieved through a pulse charge–discharge circuit. The reduction of discharge efficiency with the increase of crystallization temperature is mainly caused by interfacial polarization.  相似文献   

9.
BaTiO3-based ceramics with various grain sizes (136–529 nm) are prepared through a chemical coating method followed by sintering in a reducing atmosphere. Effects of grain size and temperature on electric properties, energy-storage properties, and dielectric tunability are studied via Current-Field (J-E) curves, ferroelectric hysteresis loops, Capacitance-Voltage (C–V) curves and Thermally stimulated depolarization currents (TSDC). At all temperatures, fine-grain ceramics yield a lower energy density but a higher energy efficiency under the same electric field, owing to a lower ferroelectric contribution. Meanwhile, fine-grain ceramics exhibit a higher maximum energy density due to their higher breakdown strength. Fine-grain ceramics with the grain size of 136 nm have the maximum energy density of 0.41 J/cm3 under the breakdown strength of 75 kV/cm, the corresponding efficiency is 81%. C–V curves show that fine-grain ceramics have better bias-field stability. According to TSDC results, fine-grain ceramics exhibit fewer oxygen vacancies and a higher relaxation activation energy.  相似文献   

10.
Ba5LaTi3Ta7O30 tungsten bronze ceramics is a typical linear dielectric with high dielectric constant and low loss, which is expected as a promising candidate for energy-storage application. In the present work, energy-storage properties of Ba5LaTi3Ta7O30 tungsten bronze ceramics were investigated, and the dielectric breakdown mechanism was also discussed based on the morphology of the fracture surface. Dense ceramics were obtained by sintering at temperatures from 1500 to 1575°C. Both the dielectric constant and dielectric strength show strong dependences on the sample density. Optimal dielectric constant of 159, dielectric strength of 639 kV/cm, and energy storage density of 2.9 J/cm3 were obtained for ceramics sintered at 1550°C, that have the highest density and fine grains. The dielectric strength and energy storage density were also highly dependent on the sample thickness. For ceramics sintered at 1525°C, the dielectric strength increases from 283 to 585 kV/cm while the energy storage density increases from 0.5 to 2.3 J/cm3 when the thickness changes from 0.5 to 0.2 mm. A thermal breakdown mechanism was adopted to understand the breakdown process in the present ceramics.  相似文献   

11.
A series of ferroelectric ceramic models with grain and grain‐boundary structures of different sizes are established via Voronoi tessellations. A phase‐field model is introduced to study the dielectric breakdown strength of these ferroelectric ceramics. Afterward, the relation between the electric displacement and electric field and the hysteresis loop are calculated using a finite element method based on a classical and modified hyperbolic tangent model. The results indicate that as the grain size decreases, the dielectric strength is enhanced, but the dielectric permittivity is reduced. The discharge energy density and energy storage efficiency of these ferroelectric ceramics extracted from the as‐calculated hysteresis both increase along with a decrease in their grain size at their breakdown points. However, under the same applied electric field, the ferroelectric ceramic with a smaller grain size possesses a lower discharge energy density but a higher energy storage efficiency. The results suggest that ferroelectric ceramics with smaller grain sizes possess advantages for applications in energy storage devices.  相似文献   

12.
BaO-K2O-Nb2O5-SiO2 (BKNS) glass ceramics were prepared by microwave crystallization of transparent glass matrices and the effects of microwave treatment temperature on their dielectric performances, phase structure, microstructure and breakdown strength (BDS) were investigated systematically. X-ray diffraction results suggested that microwave treatment had no significant influence on the type of precipitated phases. The microstructure of the glass ceramics was remarkably optimized via microwave treatment. The dielectric constant and breakdown strength of microwave-treated samples were significantly improved as compared with conventional-heated samples at the same temperature. The maximum theoretical energy storage density of microwave-treatment samples at 750?°C reached 12.7?J/cm3, which was larger than that of the conventional-heated samples (8.6?J/cm3).  相似文献   

13.
Barium sodium niobate (BNN) glass‐ceramics were successfully synthesized through a controlled crystallization method, using both a conventional and a microwave hybrid heating process. The dielectric properties of glass‐ceramics devitrified at different temperatures and conditions were measured. It was found that the dielectric constant increased with higher crystallization temperature, from 750°C to 1000°C, and that growth of the crystalline phase above 900°C was essential to enhancing the relative permittivity and overall energy storage properties of the material. The highest energy storage was found for materials crystallized conventionally at 1000°C with a discharge energy density of 0.13 J/cm3 at a maximum field of 100 kV/cm. Rapid microwave heating was found to not give significant enhancement in dielectric properties, and coarsening of the ferroelectric crystals was found to be critical for higher energy storage.  相似文献   

14.
《Ceramics International》2019,45(16):19895-19901
The low breakdown strength of BNT-based dielectric ceramics limits the increase in energy-storage density. In this study, we successfully reduced the sintering temperature of BNT-ST-5AN relaxor ferroelectric ceramics from 1150 to 980 °C by two-phase compounding with nano-SiO2. Meanwhile, the average grain size of the composite ceramics is also greatly reduced from 4.45 μm to 0.37 μm. Thus, a large recoverable energy-storage density (3.22 J/cm3) is achieved under the ultrahigh breakdown strength (316 kV/cm). Moreover, good temperature (25–150 °C) and frequency (10–200 Hz) stabilities are simultaneously achieved. The excellent energy-storage properties suggest that BNT-ST-based ceramics composited with SiO2 form a promising low-temperature sintered dielectric material for pulsed power multilayer ceramic capacitors.  相似文献   

15.
《Ceramics International》2023,49(1):801-807
The development of materials with high energy storage plays a crucial role in solving energy consumption. Traditional dielectric ceramics have the disadvantages of low energy storage and low efficiency. The most effective solution is to reduce the dielectric loss and increase the breakdown strength. In this paper, (Na0.73Bi0.08Sm0.01)(Nb0.91Ta0.09)O3 relaxor ferroelectric ceramics were prepared, which achieved a high energy storage density of 1.66 J cm?3, high efficiency (83.6%) at 214 kV/cm at room temperature. The addition of Bi2O3 makes the A site cations disordered, thereby generating random fields, breaking the long-range order, and forming polar nanodomains. That allows the ceramic to acquire relaxation properties, reducing the dielectric loss. The impedance analysis proves that the breakdown strength is related to the addition of Sm2O3. The addition of Sm reduces the oxygen vacancy defect concentration and inhibits the migration of carriers, thereby improving its breakdown strength. Through proper doping of Bi and Sm, the relaxation properties and breakdown field strength of the ceramics are enhanced to obtain excellent energy storage performance. This provides a new idea in terms of relaxation and oxygen vacancy defects for NaNbO3-based energy storage ceramics.  相似文献   

16.
Zinc borate glasses with different concentrations of Nb2O5 were prepared and later were heat treated for prolonged times. Prepared samples were characterized by XRD, SEM, DSC, IR and optical transmission spectroscopy techniques. Later, dielectric properties viz., dielectric constant, loss tangent, electric modulii, electrical impedance and a.c. conductivity over wide ranges of frequency and temperature, were investigated as a function of Nb2O5 concentration. Finally, the dielectric breakdown strength was measured in air medium at ambient temperature. The results of characterization techniques viz., XRD, SEM and DSC indicated that multiple crystal grains (with sizes varying from 0.1 to 1 μm) are dispersed in the residual glass phase. The concentration of crystal grains found to increase with increase in Nb2O5 content. The XRD studies have further revealed that the bulk samples are composed of columbite ZnNb2O6 crystal phases. Using generalized gradient approximation (GGA) quantitative information on these crystal phases viz., the lattice parameters, optical band gap and band structure were evaluated. The analysis of results of IR spectral studies have indicated that there is an increasing degree of polymerization of glass network with increase in Nb2O5 content due to the increased connectivity between various structural groups in the glass network. The optical absorption spectra indicated an increase in optical transmittance of the bulk samples with increase in Nb2O5 content. The dielectric parameters are observed to decrease, whereas the dielectric breakdown strength is observed to increase to a large extent due to the crystallization of the glass with the Nb2O5. The increase is attributed to the formation of ZnNb2O6 crystalline phases that contain intertwined ZnO6 and NbO6 structural units. As a whole, zinc borate glasses exhibited a significant increase in the electrical insulating strength due to the crystallization with Nb2O5 as the crystallizing agent. Further, the value of dielectric constant is also found to be the optimal with no dispersion with frequency up to 450 K. Overall, the studied glass‐ceramics meet the necessary physical conditions to be used as insulating layers in the display panels and hence may be considered for such applications.  相似文献   

17.
Lead lanthanum zirconate titanate ceramics (PLZT) are well known for their excellent dielectric, piezoelectric and ferroelectric properties. In this study, PLZT 9/70/30, 9/65/35 and 9/60/40 ceramics were prepared by vibro-milling mixed-oxide method. All compositions of powders were uniaxial pressed in pellets and sintered at the temperatures of 1200–1275 °C with various soaking times of 2, 4 and 6 h. The X-ray diffraction (XRD) patterns confirmed that all the PLZT samples had perovskite structure with ZrO2 as a second phase and PLZT/ZrO2 composite structure was formed. Dielectric behavior at the frequency of 1 kHz showed broad peak indicating relaxor ferroelectric behavior and the difference of the temperature at maximum dielectric at different frequencies increased when Zr:Ti ratio increased. Polarization with electric field (P-E loop) at room temperature showed that when Zr:Ti ratio increased, the coercive field decreased resulting from crystal structure change from tetragonal to rhombohedral. Induced strain with electric field depended on microstructure where the value of Smax/Emax tended to decrease with increasing grain size. It can be concluded that dielectric and ferroelectric behavior predominantly depended on composition of PLZT ceramics and induced strain behavior predominantly depended on grain size of PLZT ceramics.  相似文献   

18.
To meet requirements of miniaturization devices in high pulsed power technology, super dielectric energy storage performance, such as high dielectric breakdown strength (DBS), large energy storage density with high power density, is extremely important in dielectric materials. However, for BaTiO3 based ceramics and glass ceramics, there is still a critical challenge to achieve high DBS and large energy storage density. Herein, a novel route was proposed to precipitate nanocrystals with cubic BaTiO3 phase from glass matrix, which can elevate dielectric constant and meanwhile maintain high DBS compared to parent glass. A high recoverable energy storage density of ∼ 3.66 J cm−3 at 1000 kV cm−1 and high discharge energy density of ∼3.57 J cm−3 with good thermal stability and ultra-high peak power density of ∼ 910 MW cm−3 can be achieved in BaTiO3 glass ceramic, which implies this type of glass ceramics is suitable for high pulsed power technology application.  相似文献   

19.
Linear dielectric ceramics have received much attention due to high power density, fast discharge speed and ultralow dielectric loss, which are expected as promising candidates for the pulsed power system applications. However, their relatively low dielectric breakdown strength usually cannot meet the requirements of practical application. In this work, we adopt hot-press sintering method to enhance the dielectric breakdown strength of the TiO2-SiO2-Al2O3 based ceramics, and the dielectric breakdown strength reaches 77.5 kV/mm, which is 1.8 times as large as samples prepared by conventional sintering method. The effect of different sintering methods on microstructure, dielectric properties and dielectric breakdown strength is investigated. The improvement of dielectric breakdown strength can be ascribed to improved bulk density, smaller grain size, and reduced reduction of Ti4+ to Ti3+, associated with the applied external pressure and lower sintering temperature. Eventually, large power density (18.20 MW/cm3) is obtained in pulse overdamped discharge circuit. Meanwhile, the stored energy is also released in a short time (about 11.3 ns to release 90% of saturated energy density value).  相似文献   

20.
Zinc oxy fluoro borate glasses mixed with different concentrations of CoO (ranging from 0 to 2.0 mol%) are synthesized and subsequently crystallized. The scanning electron microscopy pictures have exhibited crystallinity. Differential scanning calorimetric studies have indicated that the prepared samples consist of multiple crystal phases. The X‐ray diffraction patterns have indicated that the glass‐ceramic samples are composed of αZn(BO2)2, (Zn)3(BO3)2, CoF2, CoF3, Co3FB7O13, ZnCo2O4, Co3O4 crystalline phases. The optical absorption and photoluminescence studies have indicated that there is a gradual increase of tetrahedral cobalt ion concentration with increase of CoO concentration in the glass network. IR spectroscopic studies have pointed out increased degree of polymerization of the zinc oxy fluoro borate glass network with increase of CoO content. The analysis of results of dielectric properties indicated increase of insulating strength of the glass‐ceramics with increase of CoO content. Finally, the dielectric breakdown strength of the samples is measured at room temperature in air medium and it is found to increase from 12.9 to 19.2 kV/cm with increase of CoO from 0.2 to 2.0 mol%. The reasons for such increase of breakdown strength are discussed quantitatively in terms of dielectric parameters with aid of data on spectroscopic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号