首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new Li‐containing microwave ceramic Ba5Li2W3O15 with hexagonal perovskite structure was prepared through a solid‐state ceramic route. Small amount of scheelite BaWO4 appeared as a second phase during sintering. The Ba5Li2W3O15 could be well densified at 1120°C and exhibits good microwave dielectric properties with permittivity (εr) of 25.4, high Q × f value about 39 000 GHz, and low temperature coefficient of resonate frequency (τf) of 10 ppm/°C. The addition of BaCu(B2O5) can effectively lower the sintering temperature from 1120°C to 900°C and does not induce degradation of the microwave dielectric properties. These results indicate that the Ba5Li2W3O15 ceramic might be a promising candidate in microwave dielectric resonators.  相似文献   

2.
Microwave dielectric ceramic powder of 0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3 (MCT) has been prepared by solid-state reaction method through single-step calcination at 1150 °C. The green bodies prepared from the calcined powder have been sintered by conventional, susceptor-aided, and hybrid microwave sintering techniques followed by annealing. XRD of calcined and sintered ceramics show (Mg,Zn)TiO3 as a major phase with CaTiO3 as a minor secondary phase. Fractographs of fired ceramics obtained by SEM show similar features in conventional and hybrid microwave types of sintering. Microwave dielectric properties such as relative permittivity(εr), temperature coefficient of resonant frequency(τf), and unloaded quality factors (Qu) for conventional sintered at 1325 °C for 4 h are—εr~19.8, τf< –6 ppm/°C and Qu.f 69,600 GHz at 6 GHz. Ceramics obtained through susceptor-aided microwave sintering at 1325 °C for 4 h show poor fired density. But ceramics got by microwave-hybrid sintering (resistive + microwave) at the same temperature show εr~20.6, Qu.f~81,600 GHz at 6 GHz and τf~?6.9 ppm/°C. The effect of hybrid microwave sintering on the dielectric properties of MCT ceramics is found to be more subtle than microstructural.  相似文献   

3.
The liquid‐phase sintering behavior and microstructural evolution of x wt% LiF aided Li2Mg3SnO6 ceramics (x = 1‐7) were investigated for the purpose to prepare dense phase‐pure ceramic samples. The grain and pore morphology, density variation, and phase structures were especially correlated with the subsequent microwave dielectric properties. The experimental results demonstrate a typical liquid‐phase sintering in LiF–Li2Mg3SnO6 ceramics, in which LiF proves to be an effective sintering aid for the Li2Mg3SnO6 ceramic and obviously reduces its optimum sintering temperature from ~1200°C to ~850°C. The actual sample density and microstructure (grain and pores) strongly depended on both the amount of LiF additive and the sintering temperature. Higher sintering temperature tended to cause the formation of closed pores in Li2Mg3SnO6x wt% LiF ceramics owing to the increase in the migration ability of grain boundary. An obvious transition of fracture modes from transgranular to intergranular ones was observed approximately at x = 4. A single‐phase dense Li2Mg3SnO6 ceramic could be obtained in the temperature range of 875°C‐1100°C, beyond which the secondary phase Li4MgSn2O7 (<850°C) and Mg2SnO4 (>1100°C) appeared. Excellent microwave dielectric properties of Q × f = 230 000‐330 000 GHz, εr = ~10.5 and τf = ~?40 ppm/°C were obtained for Li2Mg3SnO6 ceramics with x = 2‐5 as sintered at ~1150°C. For LTCC applications, a desirable Q × f value of ~133 000 GHz could be achieved in samples with x = 3‐4 as sintered at 875°C.  相似文献   

4.
A low‐permittivity dielectric ceramic Li2GeO3 was prepared by the solid‐state reaction route. Single‐phase Li2GeO3 crystallized in an orthorhombic structure. Dense ceramics with high relative density and homogeneous microstructure were obtained as sintered at 1000‐1100°C. The optimum microwave dielectric properties were achieved in the sample sintered at 1080°C with a high relative density ~ 96%, a relative permittivity εr ~ 6.36, a quality factor Q × f ~ 29 000 GHz (at 14.5 GHz), and a temperature coefficient of resonance frequency τf ~ ?72 ppm/°C. The sintering temperature of Li2GeO3 was successfully lowered via the appropriate addition of B2O3. Only 2 wt.% B2O3 addition contributed to a 21.2% decrease in sintering temperature to 850°C without deteriorating the dielectric properties. The temperature dependence of the resonance frequency was successfully suppressed by the addition of TiO2 to form Li2TiO3 with a positive τf value. These results demonstrate potential applications of Li2GeO3 in low‐temperature cofiring ceramics technology.  相似文献   

5.
Novel microwave dielectric ceramics in the Li2MnO3 system with high Q prepared through a conventional solid‐state route had been investigated. All the specimens exhibited single phase ceramics sintered in the temperature range 1140°C–1230°C. The microwave dielectric properties of Li2MnO3 ceramics were strongly correlated with sintering temperature and density. The best microwave dielectric properties of εr = 13.6, Q × f = 97 000 (GHz), and τf = ?5.2 ppm/°C could be obtained as sintered at 1200°C for 4 h. BaCu(B2O5) (BCB) could effectively lower the sintering temperature from 1200°C to 930°C and slightly induced degradation of the microwave dielectric properties. The Li2MnO3 ceramics doped with 2 wt% BaCu(B2O5) had excellent dielectric properties of εr = 11.9, Q × f = 80 600 (GHz), and τf = 0 ppm/°C. With low sintering temperature and good dielectric properties, the BCB added Li2MnO3 ceramics are suitable candidates for LTCC applications in wireless communication system.  相似文献   

6.
The crystal structure, microstructure, and microwave dielectric properties of forsterite‐based (Mg1–xNix)2SiO4 (= 0.02–0.20) ceramics were systematically investigated. All samples present a single forsterite phase of an orthorhombic structure with a space group Pbnm except for a little MgSiO3 secondary phase as x > 0.08. Lattice parameters in all axes decrease linearly with increasing Ni content due to the smaller ionic radius of Ni2+ compared to Mg2+. The substitution of an appropriate amount of Ni2+ could greatly improve the sintering behavior and produce a uniform and closely packed microstructure of the Mg2SiO4 ceramics such that a superior × f value (152 300 GHz) can be achieved as = 0.05. The τf value was found to increase with increasing A‐site ionic bond valences. In addition, various additives were used as sintering aids to lower the sintering temperature from 1500°C to the middle sintering temperature range. Excellent microwave dielectric properties of εr~6.9, × f~99800 GHz and τf~?50 ppm/°C can be obtained for 12 wt% Li2CO3‐V2O5‐doped (Mg0.95Ni0.05)2SiO4 ceramics sintered at 1150°C for 4 h.  相似文献   

7.
New dielectric ceramics are prepared by the conventional solid‐state ceramic route. Effects of LZB glass on sintering, phase purity, microstructure, and dielectric properties of Li2ZnTi3O8 ceramics have been investigated. Adding LZB lowers sintering temperature from 1050°C to 875°C, and does not induce much degradation of dielectric properties. The 1.0 wt% LZB glass‐added ceramic has better properties of εr = 23.9, Q × = 31,608 GHz, τf = ?14.3 ppm/°C. Additions of TiO2 markedly improve microwave properties. Typically, the Li2ZnTi3O8 + 1 wt%LZB + 3.5 wt%TiO2 sintered at 900°C shows εr = 26.1, Q × = 45,168 GHz, τf = ?4.1 ppm/°C. Compatibility with Ag electrode indicates that this material may be applied to LTCC devices.  相似文献   

8.
《Ceramics International》2017,43(10):7522-7530
Low-loss novel Li4Mg3Ti2O9 dielectric ceramics with rock-salt structure were prepared by a conventional solid-state route. The crystalline structure, chemical bond properties, infrared spectroscopy and microwave dielectric properties of the abovementioned system were initially investigated. It could be concluded from this work that the extrinsic factors such as sintering temperatures and grain sizes significantly affected the dielectric properties of Li4Mg3Ti2O9 at lower sintering temperatures, while the intrinsic factors like bond ionicity and lattice energy played a dominant role when the ceramics were densified at 1450 °C. In order to explore the origin of intrinsic characteristics, complex dielectric constants (ε and ε’’) were calculated by the infrared spectra, which indicated that the absorptions of phonon oscillation predominantly effected the polarization of the ceramics. The Li4Mg3Ti2O9 ceramics sintered at 1450 °C exhibited excellent properties of εr=15.97, Q·f=135,800 GHz and τf=−7.06 ppm/°C. In addition, certain amounts of lithium fluoride (LiF) were added to lower the sintering temperatures of matrix. The Li4Mg3Ti2O9−3 wt% LiF ceramics sintered at 900 °C possessed suitable dielectric properties of εr=15.17, Q·f =42,800 GHz and τf=−11.30 ppm/°C, which made such materials promising for low temperature co-fired ceramic applications (LTCC).  相似文献   

9.
An ultra-low dielectric loss ceramics Mg2Ge0.98O4 with olivine structure was fabricated by conventional solid-state route. The phase composition, crystal structure, and microwave dielectric properties were investigated. The phase of Mg2Ge0.98O4 is formed to the orthorhombic forsterite structure with a space group Pmnb (62). The dense microstructure and excellent microwave dielectric properties of Mg2Ge0.98O4 ceramic were obtained at 1360°C for 4 hours, with relative density ~96.4%, εr ~ 7.3, Q × f = 112 400 GHz, and τf ~ −64.6 ppm/°C. The conductive mechanism of Mg2Ge0.98O4 in the low frequency (<1 MHz) was studied by the dielectric spectroscopy and the result with Edc = 0.93 eV demonstrates that the defect was contributed to the double ionized oxygen vacancies. The intrinsic dielectric properties of Mg2Ge0.98O4 in the microwave region were obtained by infrared reflectivity spectra with εr ~ 7.13, Q × f = 120 400 GHz. And, acceptable τf (~+2.6 ppm/°C) of 0.92Mg2Ge0.98O4–0.08CaTiO3 composite ceramic was obtained by adding the CaTiO3.  相似文献   

10.
A series of microwave dielectric ceramics in the compositions of K2Mo2O7, K2Mo3O10, and K2Mo4O13 in K2O–MoO3 binary system with ultra low sintering temperatures were prepared using the solid‐state reaction method. Their synthesis, phase composition, compatibility with metal electrodes, microstructures, and microwave dielectric properties were investigated. The K2Mo2O7 ceramic sintered at 460°C with a triclinic structure has a relative permittivity of 7.5, a × f value of 22 000 GHz, and a τf value of ?63 ppm/°C. The X‐ray diffraction patterns indicate that K2Mo2O7 does not react with Ag and Al electrodes at the co‐fired temperatures. The K2Mo3O10 ceramic can be sintered well at 520°C with a relative permittivity of 5.6, a × f value of 35 830 GHz, and a τf value of ?92 ppm/°C. It has compatibility with Ag electrode. The K2Mo4O13 ceramic sintered at 540°C possesses good microwave dielectric properties with a relative permittivity of 6.8, a Q × f value of 39 290 GHz and a τf value of ?67 ppm/°C and it is compatible with Al electrode. For K2Mo2O7 and K2Mo4O13, it is found that the grain sizes and the number of grain boundaries play an important role in the dielectric loss. From this study, it can be seen that the three ceramics in K2O–MoO3 system have good microwave dielectric properties, ultra‐low sintering temperatures, non‐toxic, and low‐cost characteristics. So they can be potentially applied to ultra‐LTCC devices.  相似文献   

11.
A novel microwave dielectric ceramic of SrGa2Si2O8 was synthesized using the traditional solid-state method. Its phase composition, microstructure, and microwave dielectric properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, and network analyzer. XRD results indicated that the space group of the ceramic transformed from I2/c to P21/a at 700 °C. A combination of good microwave dielectric properties was obtained at 1260 °C with εr = 6.3, Q×f= 96,600 GHz and τf = −45.2 ppm/°C at 16.5 GHz. The negative τf can be tuned to near zero by adding 15 mol% CaTiO3. The densification temperature can be reduced to 940 °C by adding 4 wt% LiF. Moreover, the SrGa2Si2O8 ceramic had good chemical compatibility with the Ag electrode. A patch antenna was designed using the 0.85SrGa2Si2O8 + 0.15CaTiO3 + 4 wt% LiF ceramic. The antenna had a high radiation efficiency of 99.2 % and a gain of 2.988 dBi at the center frequency of 4.261 GHz. All results indicated that the SrGa2Si2O8 ceramic has promising potential for applications in 5 G wireless communication technology.  相似文献   

12.
Novel low temperature firing microwave dielectric ceramic LiCa3MgV3O12 (LCMV) with garnet structure was fabricated by the conventional solid‐state reaction method. The phase purity, microstructure, and microwave dielectric properties were investigated. The densification temperature for the LCMV ceramic is 900°C. LCMV ceramic possessed εr = 10.5, Qu × = 74 700 GHz, and τf = ?61 ppm/°C. Furthermore, 0.90LiCa3MgV3O12–0.10CaTiO3 ceramic sintered at 925°C for 4 h exhibited good properties of εr = 12.4, Qu × = 57 600 GHz, and τf = 2.7 ppm/°C. The LCMV ceramic could be compatible with Ag electrode, which makes it a promising ceramic for LTCC technology application.  相似文献   

13.
The effects of Li2O–ZnO–B2O3 glass additive on the sintering behavior, phase formation, microstructure, and microwave dielectric properties of ZnTiNb2O8 ceramics have been investigated. The sintering temperature of ZnTiNb2O8 ceramics can be effectively reduced from 1200°C to 875°C by adding a small amount of Li2O–ZnO–B2O3 glass, while no obvious degradation of the microwave dielectric properties was induced. Typically, the 2.0 wt% Li2O–ZnO–B2O3 glass-added ceramic sintered at 875°C has better microwave dielectric properties of ɛr=31.8, Q×f=25,013 GHz, and τf=−62 ppm/°C. In addition, the ceramics can be co-fired well with an Ag electrode.  相似文献   

14.
In this study, a novel spinel solid solution ceramic of 0.4LiFe5O8–0.6Li2MgTi3O8 (0.4LFO–0.6LMT) has been developed and investigated. It is found that the 40 mol% LiFe5O8 and 60 mol% Li2MgTi3O8 are fully soluble in each other and a disordered spinel phase is formed. The ceramic sample sintered at 1050°C/2 h exhibits both good magnetic and dielectric properties in the frequency range 1–10 MHz, with a permeability between 29.9~14.1 and magnetic loss tangent between 0.12~0.67, permittivity between 16.92~16.94 and dielectric loss tangent between 5.9 × 10?3–2.3 × 10?2. The sample also has good microwave dielectric properties with a relative permittivity of 16.1, a high quality factor (× f) ~28 500 GHz (at 7.8 GHz). Furthermore, 3 wt% H3BO3–CuO (BCu) addition can effectively lower the sintering temperature to 925°C and does not degrade the magnetodielectric properties. The chemical compatibility with silver electrode indicates that this kind of ceramics is a good candidate for the low‐temperature cofired ceramic (LTCC) application.  相似文献   

15.
The effects of ZnO and B2O3 addition on the sintering behavior, microstructure, and the microwave dielectric properties of 5Li2O‐1Nb2O5‐5TiO2 (LNT) ceramics have been investigated. With addition of low‐level doping of ZnO and B2O3, the sintering temperature of the LNT ceramics can be lowered down to near 920°C due to the liquid phase effect. The Li2TiO3ss and the “M‐phase” are the two main phases, whereas other phase could be observed when co‐doping with ZnO and B2O3 in the ceramics. And the amount of the other phase increases with the ZnO content increasing. The addition of ZnO does not induce much degradation in the microwave dielectric properties but lowers the τf value to near zero. Typically, the good microwave dielectric properties of εr = 36.4, Q × = 8835 GHz, τf = 4.4 ppm/°C could be obtained for the 1 wt% B2O3 and 4 wt% ZnO co‐doped sample sintered at 920°C, which is promising for application of the multilayer microwave devices using Ag as internal electrode.  相似文献   

16.
A pure-phase Li4MgSn2O7 (L4MS) was successfully synthesized through optimizing the calcination condition. Microwave dielectric properties of the L4MS ceramic with the phase evolution were investigated together with its low-temperature sintering. The sample maintains a single L4MS phase as sintered below 1200?°C, such that τf remains a constant value of ~12.4?ppm/°C. Accompanied by the appearance of impurity phases (Li2SnO3)ss and especially (MgO)ss at higher sintering temperatures, excellent microwave dielectric properties of εr?=?13.1–13.5, Q?×?f?=?106,800–126,810?GHz and τf ?=?0–?4.2?ppm/°C are obtained in samples sintered at 1215–1260?°C for 4?h. Reduction of sintering temperature using LiF sintering aid also helps achieve pure-phase dense L4MS ceramic. The L4MS?+?x wt.% LiF ceramic exhibits εr~13.7, Qxf~97,000?GHz (x?≤?3) and τf ~8–13?ppm/°C sintered at 850?°C for potential LTCC applications, and εr ~13.9, Qxf~146,000?GHz and τf ~1.5–6?ppm/°C (x?≥?4) as sintered 1000?°C, exhibiting large potentials for microwave dielectric candidates.  相似文献   

17.
Novel glass–free low temperature firing microwave dielectric ceramics Li2CeO3 with high Q prepared through a conventional solid‐state reaction method had been investigated. All the specimens in this paper have sintering temperature lower than 750°C. XRD studies revealed single cubic phase. The microwave dielectric properties were correlated with the sintering conditions. At 720°C/4 h, Li2CeO3 ceramics possessed the excellent microwave dielectric properties of εr = 15.8, Q × f = 143 700 (GHz), and τf  = ?123 ppm/°C. Li2CeO3 ceramics could be excellent candidates for glass‐free low‐temperature co‐fired ceramics substrates.  相似文献   

18.
CaTi1-x (Mg1/2W1/2)xO3 (x = 0, 0.02, 0.04, 0.06, 0.08) dielectric ceramics were synthesized via the traditional solid-state reaction method. Crystal structure and microwave dielectric properties of CaTi1-x (Mg1/2W1/2)xO3 system were systematically investigated based on chemistry bond theory (P–V-L theory) for the first time. The pure perovskite phase was obtained for all doped samples, as confirmed through the XRD and Rietveld refinement results. The lattice characteristics were closely related to the microwave dielectric properties. The bond ionicity, lattice energy, and bond energy affected the dielectric constant, quality factor, and temperature stability of the ceramic material. Through the use of (Mg1/2W1/2)4+ doped on B-site, the CaTi1-x (Mg1/2W1/2)xO3 system can maintain a high dielectric constant (εr > 100) while effectively reducing the τf value from 800 ppm/°C to less than 300 ppm/°C and improving the Q × f value to 9650 GHz (at 3.76 GHz).  相似文献   

19.
A novel low‐temperature sintering microwave dielectric based on forsterite (Mg2SiO4) ceramics was synthesized through the solid‐state reaction method. The effects of LiF additions on the sinterability, phase composition, microstructure, and microwave dielectric properties of Mg2SiO4 were investigated. It demonstrated that LiF could significantly broaden the processing window (~300°C) for Mg2SiO4, and more importantly the sintering temperature could be lowered below 900°C, maintaining excellent microwave dielectric properties simultaneously. The 2 wt% LiF‐doped samples could be well‐sintered at 800°C and possessed a εr ~ 6.81, a high Q×f ~ 167 000 GHz, and a τf ~ ?47.9 ppm/°C, having a very good potential for LTCC integration applications.  相似文献   

20.
La1‐xZnxTiNbO6‐x/2 (LZTN‐x) ceramics were prepared via a conventional solid‐state reaction route. The phase, microstructure, sintering behavior, and microwave dielectric properties have been systematically studied. The substitution of a small amount of Zn2+ for La3+ was found to effectively promote the sintering process of LTN ceramics. The corresponding sintering mechanism was believed to result from the formation of the lattice distortion and oxygen vacancies by means of comparative studies on La‐deficient LTN ceramics and 0.5 mol% ZnO added LTN ceramics (LTN+0.005ZnO). The resultant microwave dielectric properties of LTN ceramics were closely correlated with the sample density, compositions, and especially with the phase structure at room temperature which depended on the orthorhombic‐monoclinic phase transition temperature and the sintering temperature. A single orthorhombic LZTN‐0.03 ceramic sintered at 1200°C was achieved with good microwave dielectric properties of εr~63, Q×f~9600 GHz (@4.77 GHz) and τf ~105 ppm/°C. By comparison, a relatively high Q × f~80995 GHz (@7.40 GHz) together with εr~23, and τf ~?56 ppm/°C was obtained in monoclinic LTN+0.005ZnO ceramics sintered at 1350°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号