首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction of human immunodeficiency virus (HIV)-specific T-cell responses is widely seen as critical to the development of effective immunity to HIV type 1 (HIV-1). Plasmid DNA and recombinant fowlpox virus (rFPV) vaccines are among the most promising safe HIV-1 vaccine candidates. However, the immunity induced by either vaccine alone may be insufficient to provide durable protection against HIV-1 infection. We evaluated a consecutive immunization strategy involving priming with DNA and boosting with rFPV vaccines encoding common HIV-1 antigens. In mice, this approach induced greater HIV-1-specific immunity than either vector alone and protected mice from challenge with a recombinant vaccinia virus expressing HIV-1 antigens. In macaques, a dramatic boosting effect on DNA vaccine-primed HIV-1-specific helper and cytotoxic T-lymphocyte responses, but a decline in HIV-1 antibody titers, was observed following rFPV immunization. The vaccine regimen protected macaques from an intravenous HIV-1 challenge, with the resistance most likely mediated by T-cell responses. These studies suggest a safe strategy for the enhanced generation of T-cell-mediated protective immunity to HIV-1.  相似文献   

2.
Containment of the acquired immunodeficiency syndrome (AIDS) epidemic will require an effective human immunodeficiency virus type 1 (HIV-1) vaccine. Accumulating evidence suggests that such a vaccine must efficiently elicit an HIV-1-specific cytotoxic T lymphocyte (CTL) response. Nonhuman primate models will continue to provide an important tool for assessing the extent of protective immunity induced by various immunization strategies. Although replication-competent AIDS viruses attenuated for pathogenicity by selective gene deletions have provided protective immunity in nonhuman primate models, the long-term safety of such vaccines in human populations is suspect. Inactivated virus and subunit vaccines have elicited neither CTLs nor antibodies capable of neutralizing a wide array of patient HIV-1 isolates. Considerable effort is now being focused on evaluating live vector-based vaccine and plasmid DNA vaccine approaches for preventing HIV-1 infection both in animal model and human studies. Our growing understanding of the biology of HIV-1 and immune responses to this virus will continue to suggest improved vaccination approaches for exploration.  相似文献   

3.
The dichotomy of type-1 and type-2 T-helper (Th) immune responses is thought to be an obstacle to develop Human immunodeficiency virus-type- (HIV-1) vaccines capable of inducing effective cellular as well as humoral immune responses. Macaca mulatta were immunized using two different HIV-1sf2 envelope vaccine strategies, based on either immune-stimulating complexes (ISCOM) or chimeric Fowlpox (FP) vaccines. One month following the third immunization all animals were heterologously challenged with simian/human immunodeficiency virus (SHIVsf13). Vaccinated monkeys, which were protected had the highest levels of both type-1 and type-2 HIV-1 specific T-helper cell (Th) responses in addition to the highest homologous and heterogenous virus neutralizing antibodies. To determine how long Th responses persisted and if they correlated with protection, animals were rechallenged after waiting for four months without re-boosting. Macaques which maintained the highest gp120-specific type-1 (IFN-gamma) responses were protected, while there was evidence of viral clearance in two others. These findings demonstrate the importance of both or mixed type-1 and type-2 Th responses in HIV-1 vaccine induced immunity while suggesting a possible role of persistent type-1 responses in maintaining protective immunity over time.  相似文献   

4.
The Semliki Forest virus (SFV) system seems to be a useful new approach for generating effective immune responses against HIV-1 in animal models. We evaluated this system by comparing the humoral immune responses raised in mice immunized against the HIV-1 envelope with the SFV system, a DNA vaccine, and a recombinant Env glycoprotein. gp160 ELISA antibody titers (204,800) were highest in the sera from mice immunized with recombinant Semliki Forest virus particles. These sera contained antibodies to the CD4-binding site and recognized linear epitopes on gp120 and gp41 that were also recognized by a pool of sera from HIV1-infected individuals. This demonstrates that the HIV-1 envelope produced in vivo by the SFV system does not fold aberrantly. A low level of neutralizing antibodies against the HIV-1LAI strain was also detected in the serum of one mouse immunized with recombinant SFV particles, suggesting that booster injections should be given to achieve a more effective immune response. SFV recombinant particles induced the strongest humoral responses to the HIV-1 envelope of all the potential HIV env vaccines tested.  相似文献   

5.
6.
Twelve subjects were treated with zidovudine, lamivudine, and ritonavir within 90 days of onset of symptoms of acute infection to determine whether human immunodeficiency virus type 1 (HIV-1) infection could be eradicated from an infected host. In adherent subjects, with or without modifications due to intolerance, viral replication was suppressed during the 24-month treatment period. Durable suppression reduced levels of HIV-1-specific antibodies and cytotoxic T lymphocyte responses in selected subjects. Proviral DNA in mononuclear cells uniformly persisted. The persistence of HIV-1 RNA expression in lymphoid tissues and peripheral blood mononuclear cells suggests that elimination of this residual pool of virus should be achieved before considering adjustments in antiretroviral therapeutic regimens. In addition, given the reduction in levels of virus-specific immune responses, it would seem prudent to consider enhancing these responses using vaccine strategies prior to the withdrawal of antiviral therapy.  相似文献   

7.
OBJECTIVES: To investigate whether immunization with recombinant HIV-1 envelope protein derived from a clinical isolate could protect macaques from infection with an in vivo passaged chimeric simian-human immunodeficiency virus (SHIV). DESIGN AND METHODS: A total of 16 animals were studied from which three groups of four animals were immunized with vaccine formulations of the CC-chemokine receptor-5-binding recombinant gp120 of HIV-1W6.1D. Four weeks after the last immunization, all 16 animals were intravenously challenged with in vivo passaged SHIV derived from the same HIV-1 group B clinical isolate (W6.1D) as the vaccines. RESULTS: Vaccine protection from infection was demonstrated in 10 out of 12 macaques immunized with recombinant gp120. Complete protection from infection was achieved with all of the animals that received the SBAS2-W6.1D formulation, a potent inducer of both T-cell and humoral immune responses. Partial protection was achieved with SBAS1-W6.1D, a formulation based on immunomodulators known to induce T-cell responses in humans. In vaccinated animals that were infected, virus load was reduced and infection was delayed. CONCLUSIONS: In a relatively large number of primates, vaccine efficacy was demonstrated with a clinically relevant HIV-1 vaccine. These results reveal that it is possible to induce sterilizing immunity sufficient to protect from infection with SHIV which was passaged multiple times in vivo. Our findings have implications for current HIV-1 clinical vaccine trials and ongoing efforts to develop safe prophylactic AIDS vaccines.  相似文献   

8.
Increasing evidence suggests that HIV-1-specific cytotoxic T lymphocytes (CTLs) are a key host immune response to HIV-1 infection. Generation of CTL responses for prevention or therapy of HIV-1 infection has several intrinsic technical barriers such as antigen expression and presentation, the varying HLA restrictions between different individuals, and the potential for viral escape by sequence variation or surface molecule alteration on infected cells. A strategy to circumvent these limitations is the construction of a chimeric T cell receptor containing human CD4 or HIV-1-specific Ig sequences linked to the signaling domain of the T cell receptor zeta chain (universal T cell receptor). CD8+ CTLs transduced with this universal receptor can then bind and lyse infected cells that express surface HIV-1 gp120. We evaluated the ability of universal-receptor-bearing CD8+ cells from a seronegative donor to lyse acutely infected cells and inhibit HIV-1 replication in vitro. The kinetics of lysis and efficiency of inhibition were comparable to that of naturally occurring HIV-1-specific CTL clones isolated from infected individuals. Further study will be required to determine the utility of these cells as a therapeutic strategy in vivo.  相似文献   

9.
The development of prophylactic vaccines against retroviral diseases has been impeded by the lack of obvious immune correlates for protection. Cytotoxic T-lymphocyte (CTL), CD4-lymphocyteS, chemokine and/or antibody responses have all been associated with protection against HIV and AIDS; however, effective and safe vaccination strategies remain elusive. Here we show that vaccination with a minimal ovine CTL peptide epitope identified within gp51 of the retrovirus bovine leukemia virus (BLV), consistently induced peptide-specific CTLs. Only sheep whose CTLs were also capable of recognizing retrovirus-infected cells were fully protected when challenged with BLV. This retrovirus displays limited sequence variation; thus, in the relative absence of confounding CTL escape variants, virus-specific CTLs targeting a single epitope were able to prevent the establishment of a latent retroviral infection.  相似文献   

10.
Understanding the antibody response in HIV-1 infection is important to vaccine design. We have studied the antibody response to HIV-1 envelope at the molecular level and determined the characteristics of neutralizing and non-neutralizing antibodies. These antibodies were isolated from phage display libraries prepared from long-term seropositive asymptomatic individuals. The HIV-1 envelope is presented to the immune system in several antigenically distinct configurations: unprocessed gp160, gp120 and gp41 subunits and native envelope, each of which may be important in eliciting an antibody response in HIV-1 infection. The antibodies tested characteristically had poor affinities for native envelope as expressed on the surface of virions or infected cells, but had high affinities against non-native forms of HIV-1 envelope (viral debris). An exceptionally potent neutralizing antibody in contrast, bound native envelope with equivalent or somewhat higher affinity than this. This indicates that the antibody response in HIV-1 infection is principally elicited by viral debris rather than virions, and that these antibodies bind and neutralize viruses sub-optimally. Potential vaccines should be designed to elicit responses against native envelope.  相似文献   

11.
The chimeric simian-human immunodeficiency virus SHIVKU-1, bearing the envelope of human immunodeficiency virus type 1 (HIV-1), causes fulminant infection with subtotal loss of CD4(+) T cells followed by development of AIDS in intravaginally inoculated macaques and thus provides a highly relevant model of sexually transmitted disease caused by HIV-1 in human beings. Previous studies using this SHIV model had shown that the vpu and nef genes were important in pathogenesis of the infection, and so we deleted portions of these genes to create two vaccines, DeltavpuDeltanefSHIV-4 (vaccine 1) and DeltavpuSHIVPPc (vaccine 2). Six adult macaques were immunized subcutaneously with vaccine 1, and six were immunized orally with vaccine 2. Both viruses caused infection in all inoculated animals, but whereas vaccine 1 virus caused only a nonproductive type of infection, vaccine 2 virus replicated productively but transiently for a 6- to 10-week period. Both groups were challenged 6 to 7 months later with pathogenic SHIVKU-1 by the intravaginal route. All four unvaccinated controls developed low CD4(+) T-cell counts (<200/microliter) and AIDS. The 12 vaccinated animals all became infected with SHIVKU-1, and two in group 1 developed a persistent productive infection followed by development of AIDS in one. The other 10 have maintained almost complete control over virus replication even though spliced viral RNA was detected in lymph nodes. This suppression of virus replication correlated with robust antiviral cell-mediated immune responses. This is the first demonstration of protection against virulent SHIV administered by the intravaginal route. This study supports the concept that sexually transmitted HIV disease can be prevented by parenteral or oral immunization.  相似文献   

12.
Many people who remain persistently seronegative despite frequent HIV exposure have HIV-specific immune responses. The study of these may provide information about mechanisms of natural protective immunity to HIV-1. We describe the specificity of cytotoxic T lymphocyte responses to HIV in seronegative prostitutes in Nairobi who are apparently resistant to HIV infection. These women have had frequent exposure to a range of African HIV-1 variants, primarily clades A, C, and D, for up to 12 yr without becoming infected. Nearly half of them have CTL directed towards epitopes previously defined for B clade virus, which are largely conserved in the A and D clade sequences. Stronger responses are frequently elicited using the A or D clade version of an epitope to stimulate CTL, suggesting that they were originally primed by exposure to these virus strains. CTL responses have been defined to novel epitopes presented by HLA class I molecules associated with resistance to infection in the cohort, HLA-A*6802 and HLA-B18. Estimates using a modified interferon-gamma Elispot assay indicate a circulating frequency of CTL to individual epitopes of between 1:3,200 and 1:50,000. Thus, HIV-specific immune responses-particularly cross-clade CTL activity- may be responsible for protection against persistent HIV infection in these African women.  相似文献   

13.
Vaccination with naked DNA may be an alternative to conventional vaccines because it combines the efficacy of attenuated vaccines with the biological safety of inactivated vaccines. We recently showed that the vaccination with naked DNA coding for the immunorelevant glycoprotein D (gD) of pseudorabies virus (PRV) induced both antibody and cell-mediated immunity in pigs and provided protection against challenge infection. To determine whether the efficacy of the naked DNA vaccination against PRV could be improved, we compared three sets of variables. First, the efficacy of the naked DNA vaccine coding only for the immunorelevant gD was compared with a cocktail vaccine containing additional plasmids coding for two other immunorelevant glycoproteins, gB and gC. Second, the intramuscular route of vaccination was compared with the intradermal route. Third, the commonly used needle method of inoculation was compared with the needleless Pigjet injector method. Five groups of five pigs were vaccinated three times at 4-weeks intervals and challenged with the virulent NIA-3 strain of PRV 6 weeks after the last vaccination. Results showed that although the cocktail vaccine induced stronger cell-mediated immune responses than the vaccine containing only gD plasmid, both vaccines protected pigs equally well against challenge infection. Intradermal inoculation with a needle induced significantly stronger antibody and cell-mediated immune responses and better protection against challenge infection than intramuscular inoculation. Our data show that the route of administering DNA vaccines in pigs is important for an optimal induction of protective immunity.  相似文献   

14.
Enhancement of immunity in the setting of HIV infection is difficult owing to loss of functional CD4+ T cells. The MHC class II-deficient mouse (II-/-) environment simulates that of the immunocompromised HIV-infected individual, since these mice have low CD4+ T cell numbers, defective CD4-dependent responses, and are susceptible to opportunistic infection. This strain was used to test whether heat-killed Brucella abortus (BA), covalently conjugated to the V3 peptide of HIV-1 (MN), could elicit anti-HIV responses. V3-BA, but not the T-dependent antigen V3-KLH, induced high levels of IL-12, IFN-gamma, and IL-10 mRNA in both wild-type (WT) and II-/- mice within 24 hr of injection. V3-BA-treated, but not V3-KLH-treated, II-/- mice developed serum IgG and IgA anti-V3 antibodies, with IgG2b and IgG3 as the predominant isotype. Viral neutralization studies, using a syncytium inhibition assay, demonstrated that the antibodies generated by V3-BA in II-/- mice were capable of neutralizing HIV. These experiments demonstrate that a heat-inactivated bacterium such as BA, when used as a carrier, can generate a cytokine environment that results in the production of neutralizing antiviral antibodies in an immunodeficient host. Such strategies could be important in the development of immunotherapies and vaccines for HIV-1 patients.  相似文献   

15.
To evaluate the effectiveness of vaccine protection from infected cells from another individual of the same species, vaccinated rhesus macaques (Macaca mulatta) were challenged with peripheral blood mononuclear cells from another animal diagnosed with acquired immune deficiency syndrome (AIDS). Half of the simian immunodeficiency virus (SIV)-vaccinated animals challenged were protected, whereas unprotected vaccinates progressed as rapidly to AIDS. Protection was unrelated to either total antibody titers to human cells, used in the production of the vaccine, to HLA antibodies or to virus neutralizing activity. However, analysis of the serotype of each animal revealed that all animals protected against cell-associated virus challenge were those which were SIV vaccinated and which shared a particular major histocompatibility complex (MHC) class I allele (Mamu-A26) with the donor of the infected cells. Cytotoxic T lymphocytes (CTL) specific for SIV envelope protein were detected in three of four protected animals vs. one of four unprotected animals, suggesting a possible role of MHC class I-restricted CTL in protection from infected blood cells. These findings have possible implications for the design of vaccines for intracellular pathogens such as human immunodeficiency virus (HIV).  相似文献   

16.
The fine specificity of the anti-V3 antibody responses induced in chimpanzees immunized by various human immunodeficiency type 1 (HIV-1) candidate vaccines and challenged by heterologous strains of HIV-1 was analyzed by enzyme-linked immunosorbent assay (ELISA) and Pepscan epitope mapping. Two chimpanzees immunized with the recombinant canarypox virus ALVAC-HIV (vCP125) expressing gp160MN and boosted with purified gp160MN/LAI alone, then with both immunogens in combination, were not protected against challenge with HIV-1 SF2. Their sera mainly recognized one epitope of the V3 loop, located in the NH2-terminal half. By contrast, immunization of two other chimpanzees with purified gp160MN/LAI and boosting with a synthetic V3MN peptide elicited a strong anti-V3 antibody response with a broader specificity directed against multiple epitopes all along the V3 loop. These chimpanzees were protected against infection by HIV-1 SF2. However, when these two chimpanzees were challenged later with a HIV-1 clade E strain virus, they became infected. We failed to detect any reactivity with the peptide of the ectodomain of gp41 of sera harvested after immunization with the various immunogens or after challenge with HIV-1 SF2 or HIV-1 90CR402. These results demonstrated that anti-V3 antibodies with a restricted fine specificity were induced in chimpanzees immunized with gp160 purified or expressed by recombinant canarypox confirming our previous results obtained in three different species (human, guinea pig and, macaque). In contrast, a boost with the V3 peptide broadened antibody responses, suggesting that the mode of presentation of the V3 loop to the immune system strongly influences the epitope specificity of the resulting antibody response.  相似文献   

17.
HIV-2 is less pathogenic and less transmissible than HIV-1. Recent research in relation to deletions in the HIV nef gene and to immune cross-reactions between infections by HIV-2, HIV-1 and simian immunodeficiency virus suggests that T cell recognition and the control of viral replication may be more efficient in HIV-2 infection than in HIV-1 infection. These insights may be crucial to the design of effective vaccines.  相似文献   

18.
HIV preventive vaccines. Progress to date   总被引:1,自引:0,他引:1  
The major conceptual problem for HIV vaccine development has been the lack of information on immune responses known to correlate with protection against HIV infection in humans. In this regard, studies on the natural history of HIV infection and AIDS, especially of people with apparent resistance to HIV infection and of patients with HIV infection who have long term survival without disease progression, may provide important information for vaccine development. In addition, a major concern for the development of broadly effective vaccines has been the extensive genetic variability which is characteristic of HIV. In spite of these unknowns, the first generation of HIV candidate vaccines has been developed and evaluated. HIV candidate vaccines based on the subunit recombinant envelope concept (gp120 or gp160) have been shown to protect chimpanzees from HIV infection on challenge, and have now been evaluated in humans in phase I and phase II trials. These products are well tolerated, and capable of inducing neutralising antibodies, but not cytotoxic T lymphocytes. A second vaccine concept, currently in phase I trials, is based on live recombinant vectors, especially using poxvirus vectors followed by boosting with subunit recombinant envelope vaccines. This concept is theoretically very attractive because preliminary data suggest that these vaccines induce both humoral and cell-mediated immunity. However, no published information is available on the ability of live recombinant vector vaccines to protect chimpanzees from HIV infection. The next step in HIV vaccine development is to proceed carefully to expanded phase II and phase III trials to assess the protective efficacy of these candidate vaccines in humans. These trials will be extremely complex from the logistical, scientific and ethical points of view, and will require close collaboration between clinical, basic science and behavioural researchers, national and international organisations, and the pharmaceutical industry.  相似文献   

19.
Characterization of virus-specific immune responses to human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) is important to understanding the early virus-host interactions that may determine the course of virus infection and disease. Using a comprehensive panel of serological assays, we have previously demonstrated a complex and lengthy maturation of virus-specific antibody responses elicited by attenuated strains of SIV that was closely associated with the development of protective immunity. In the present study, we expand these analyses to address several questions regarding the nature of the virus-specific antibody responses to pathogenic SIV, SIV/HIV-1 (SHIV), and HIV-1 infections. The results demonstrate for the first time a common theme of antibody maturation to SIV, SHIV, and HIV-1 infections that is characterized by ongoing changes in antibody titer, conformational dependence, and antibody avidity during the first 6 to 10 months following virus infection. We demonstrate that this gradual evolution of virus-specific antibody responses is independent of the levels of virus replication and the pathogenicity of the infection viral strain. While the serological assays used in these studies were useful in discriminating between protective and nonprotective antibody responses during evaluation of vaccine efficacy with attenuated SIV, these same assays do not distinguish the clinical outcome of infection in pathogenic SIV, SHIV, or HIV-1 infections. These results likely reflect differences in the immune mechanisms involved in mediating protection from virus challenge compared to those that control an established viral infection, and they suggest that additional characteristics of both humoral and cellular responses evolve during this early immune maturation.  相似文献   

20.
Recombinant vaccinia virus (VV) vectors that express the envelope (Env) protein of the human immunodeficiency virus-type 1 (HIV-1) have been previously shown to elicit HIV-specific cytotoxic T-lymphocyte (CTL) and weak antibody responses in non-human primate studies and clinical trials. In first clinical trials, single Env proteins were presented to the immune system by VV recombinants and other vectors, but individuals were not protected against later exposures to heterologous HIV. It is likely that the generation of protective immune responses against diverse HIV will require that vaccines encompass proteins from not just one, but multiple distinct HIV isolates. Here is described the simple construction of numerous new VV, each expressing a unique, truncated, Env protein (VVenv). Mouse experiments were performed to evaluate the ability of these VVenv to elicit immune responses. HIV-1-specific antibodies appeared within one month following one intraperitoneal inoculation of mice with single or mixed VVenv, reaching plateau levels by 4 months. The magnitude of antibody production was poor at the dose of 10(5) p.f.u. VVenv per animal, but improved with increasing doses of VVenv up to 10(7) p.f.u. per animal. The subcutaneous route of VV immunization, previously proven safe in human trials, was also effective for administering VVenv. These results highlight the strengths of recombinant VV constructs as vehicles for the presentation of multiple HIV-1-Env proteins to the naive immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号