首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The results of studying the phase transformations, the texture formation, and the anisotropy of the mechanical properties in Al–Cu–Li and Al–Mg–Li alloys are generalized. A technique and equations are developed to calculate the amounts of the S1 (Al2MgLi), T1 (Al2CuLi), and δ' (Al3Li) phases. The fraction of the δ' phase in Al–Cu–Li alloys is shown to be significantly higher than in Al–Mg–Li alloys. Therefore, the role of the T1 phase in the hardening of Al–Cu–Li alloys is thought to be overestimated, especially in alloys with more than 1.5% Li. A new model is proposed to describe the hardening of Al–Cu–Li alloys upon aging, and the results obtained with this model agree well with the experimental data. A texture, which is analogous to that in aluminum alloys, is shown to form in sheets semiproducts made of Al–Cu–Li and Al–Mg–Li alloys. The more pronounced anisotropy of the properties of lithium-containing aluminum alloys is caused by a significant fraction of the ordered coherent δ' phase, the deformation mechanism in which differs radically from that in the solid solution.  相似文献   

2.
Babkin  V. G.  Cheglakov  V. V.  Khristinich  R. M.  Pushkaryeva  T. P. 《Metallurgist》2020,63(9-10):1086-1093
Metallurgist - Dispersion of lead during smelting wrought aluminum alloys of the Al–Cu–Mg system with Pb additives and coarsening of lead-bearing phase particles during casting have a...  相似文献   

3.
The formation of the anisotropy of the mechanical properties, the texture, and the phase composition of thin-sheet Al–4.3Cu–1.4Li–0.4Mg and Al–1.8Li–1.8Cu–0.9 Mg alloys have been studied by X-ray diffraction and tensile tests. Various types of anisotropy of the strength properties of the alloys have been revealed: normal anisotropy (strength in the longitudinal direction is higher than that in the transverse direction) in the Al–4.3Cu–1.4Li–0.4Mg alloy and inverse anisotropy in the Al–1.8Li–1.8Cu–0.9Mg alloy. It is shown that the anisotropy of the strength properties is dependent not only on the texture of a solid solution, but also on the content and the texture of the δ' (Al3Li) and T1 (Al2CuLi) phases and their coherency and compatibility of deformation with the matrix.  相似文献   

4.
Phase transformations in the Al–Ca–Mg–Si system in the region of aluminum–magnesium alloys are investigated using the Thermo-Calc program. The liquidus projection of the quaternary system is constructed with a Mg content of 10% and it is shown that phases Al4Ca, Mg2Si, and Al2CaSi2 can crystallize (in addition to the aluminum solid solution (Al)) depending on the calcium and silicon concentrations. The crystallization character of quaternary alloys is investigated with the help of a polythermal cross section calculated at concentrations of 10% Mg and 84% Al. Based on the analysis of phase transformations occurring in alloys of this section, the presence of the Al–Al2CaSi2–Mg2Si quasi-ternary section in the Al–Ca–Mg–Si system was assumed. Three experimental alloys were considered from a quantitative analysis of the phase composition, notably, Al–10% Ca–10% Mg–2% Si, Al–4% Ca–10% Mg–2% Si, and Al–3% Ca–10% Mg–1% Si. Metallographic investigations and electron-probe microanalysis were performed using a TESCAN Vega 3 scanning electron microscope. Critical temperatures are determined using a DSC Setaram Setsys Evolution differential calorimeter. The experimental results agree well with the calculated data; in particular, a peak at t ~ 450°C is revealed for all alloys in curves of the nonequilibrium solidus and invariant eutectic reaction L → (Al) + Al4Ca + Mg2Si + Al3Mg2. It is established that the structure of the Al–3% Ca–10% Mg–1% Si alloy is closest to the eutectic alloy. It is no worse that the AMg10 alloy in regards to density and corrosion resistance and even surpasses it in hardness, which allows us to consider this alloy as the basis for the development of a new cast material: “natural composites.”  相似文献   

5.
Sintering and aging behaviours of Al–Cu–Mg powder metallurgy (PM) alloy produced from elemental powders were examined. After evaluating results from thermal analysis, tests were carried out on Al–4Cu alloys with magnesium contents of 0.5, 1 and 2?wt-% and it was found that additions of 1?wt-% Mg was most effective for enhancing the transverse rupture strength (TRS) of the Al–Cu PM alloys for both as sintered and after a heat-treatment conditions. Grain size reduction in the range of 14–45% was achieved by adding magnesium into Al–Cu system. Analyses showed that produced alloys were composed of Al, Al2Cu, Al2CuMg and Al7Cu2Fe phases. Differential scanning calorimeter and dilatometer analyses revealed that alloys show swelling behaviour after the eutectic melting reaction at 548°C and swelling rates increasing as a function of magnesium content. Both high hardness value (120 HB) and TRS (650?MPa) were achieved via aging of Al4Cu1Mg alloy for 24 hours.  相似文献   

6.
To optimize the compositions of new high-strength aluminum ATs7NZh and ATs6N0.5Zh alloys (economically alloyed nikalins), the thermodynamic optimization of the Al-Zn-Mg-Cu-Ni-Fe system is performed via the construction of polythermal sections and the calculation of the chemical composition and volume fraction of phases at characteristic temperatures. The concentrations of the matrix elements (Zn, Mg, Cu) that determine the high level of mechanical properties are shown to be 6–7 wt % Zn, 2–3 wt % Mg, and up to 0.3 wt % Cu. The concentrations of the eutectic-forming elements (Ni, Fe) that ensure the solidification of (Al) + Al9FeNi eutectic are determined. This eutectic favors an increase in the manufacturing properties of the alloys during casting, metal forming, and welding along with a retained high level of the mechanical properties. In general, experimental results confirm the calculated data.  相似文献   

7.
Aluminum alloys of the Al–Cu–Mn (Zr) system possess high strength and manufacturability without heat treatment (HT). In order to investigate the possibility of fabricating an aluminum boron-containing alloy in the form of sheet rolling with increased strength without the HT, Al–2% Cu–1.5% Mn–2% B and Al–2% Cu–1.5% Mn–0.4% Zr–2% B alloys are prepared. To exclude the deposition of refractory boride particles, smelting is performed in a RELTEK induction furnace providing intense melt stirring. The smelting temperature is 950–1000°C. Pouring is performed into 40 × 120 × 200 mm graphite molds. It is established using computational methods (Thermo-Calc) that manganese forms complex borides with aluminum and zirconium at the smelting temperature and a sufficient amount of manganese remains in liquid, while zirconium is almost absent in it. The formation of AlB2Mn2 complex boride is proved experimentally (scanning electron microscopy and micro X-ray spectral analysis), but the amount of manganese remaining in the solid solution is sufficient to form particles of the Al20Cu2Mn3 phase in an amount reaching 7 wt %. Boron in the zirconium-containing alloy stimulates the isolation of primary crystals Al3Zr, in connection with which an insufficient amount of zirconium remains in the aluminum solid solution for strengthening. The possibility of fabricating thin-sheet rolling smaller than 0.3 mm in thickness with uniformly distributed agglomerations of the boride phase with a particle size smaller than 10 µm is shown. A high level of strength (up to 543 MPa) is attained with no use of quenching or aging due to the isolation of dispersoids of the Al20Cu2Mn3 phase during hot deformation (t = 450°C).  相似文献   

8.
Zharov  M. V. 《Metallurgist》2022,66(3-4):276-289
Metallurgist - This paper presents the results of studies into the process of obtaining granular materials from high-strength aluminum alloys of the Al–Zn–Mg–Cu system by melt...  相似文献   

9.
ABSTRACT

An Al–Cu–Mg–Si alloy was prepared by conventional press-sintering powder metallurgy using elemental Al powder. The phase transformation process of Al–Mg, Al–Si alloy and Cu during the sintering process was investigated in details. It was found that a series of phase transitions take place in the alloy to disrupt the oxide film of Al particle and enhance the densification process. The relative density of the sintered samples reached 98%. A new Al–Mg–Cu–O compound was found at the grain boundaries except the MgAl2O4 phase, it is speculated that the disruption of the oxide film was also associated with the other alloy compositions except for Mg. Furthermore, no detectable AlN compound was found at the grain boundary region although sintering with flowing nitrogen atmosphere, which is benefit from the high density of the green compact and the excellent wettability between the liquid phase and the aluminium.  相似文献   

10.
The commercial 7000 series aluminum alloys are based on AlZnMg and AlZnMgCu systems. These alloys commonly contain trace amounts of zirconium for grain refining purposes. In this paper, the influence of zirconium on the early stages of aging an AlZnMg alloy is considered. It is shown that two different kinds of microstructure are developed for materials with and without zirconium when heat treated slightly above the GP (Guinir Preston) zone solvus. For the ternary alloy, the microstructure consists of both metastable MgZn2(ν′)phase and “stable GP zones(/clusters)”; the stable GP zones act as the nucleation sites for the ν′ phase. Whilst, in the case of the zirconium bearing alloy, the microstructure consists only of a heterogeneous distribution of under developed ν′ precipitates. These observations are discussed in relation to the critical role of vacancies in the formation and stability of GP zones and precipitate nuclei, and of zirconium in reducing the total numbers of available excess vacancies in these materials.  相似文献   

11.
In the present study, microstructural and mechanical properties of diffusion bonding of AZ31–Mg with Al 5754, Al 6061, and Al 7039 alloys were compared under same conditions. The vacuum diffusion processes were performed at a temperature of 440 °C, the pressure of 29 MPa, and a vacuum of 1?×?10?4 torr for 60 min. The microstructural characterizations were investigated using optical microscopy and scanning electron microscopy equipped with EDS analysis and linear scanner. The XRD analysis was performed to study phase figures near the interface zone. The results revealed the formation of brittle intermetallic compounds like Al12Mg17, Al3Mg2, and their other combinations at bonding interfaces of all samples. Additionally, the hardness of Al alloys seemed to play a key role in increasing diffusion rate of magnesium atoms toward the aluminum atoms, with Al 6061 alloy having the highest diffusion rate. It consequently led to an increase in diffusion rate and thus formation of a strong diffusion bonding between magnesium and aluminum alloys. The highest strength was about 42 MPa for the diffusion bonding between Mg AZ31 and Al 6061. Further investigations on surfaces indicated that the brittle phases especially Al3Mg2 caused brittle fracturing.  相似文献   

12.
《粉末冶金学》2013,56(1):13-16
Abstract

The effect of additions of transitional refractory metals on the structure and properties of Al–Zn–Mg alloys, made by ingot and PM routes, was investigated. The strength of the ingot alloys especially is increased by scandium and zirconium. The modifying action of scandium inhibits recrystallisation and precipitation of the fine-grained coherent Al3(Sc1–xZrx) phase. The effect is weaker in PM alloys where the ultra-high cooling rate during high pressure water atomisation produces the fine-grained structure. PM semi-products of the base composition Al–5Zn–3Mg and alloys without scandium are not recrystallised during heating to 500°C, whereas cast alloys of similar composition recrystallised on the hot extrusion stage at 400–450°C. Of the Sc alloys, Al–5Zn–3Mg–0·5Mn–0·7Zr–0·3Sc showed the highest strength (UTS?=?651 MPa, YS?=?596 MPa), whereas of the PM alloys without scandium Al–5Zn–3Mg–0·85Zr–0·22Cr–0·17Ni–0·15Ti alloy showed UTS?=?618 MPa and YS?=?553 MPa. At melt cooling rates of 105–106 K s–1 the total content of transitional refractory metals must not exceed 1·5–1·7 wt-% and total content (Zn+Mg) should be <8 wt-% at a Zn/Mg ratio of 5:3.  相似文献   

13.
Al–Cu–Mn (Zr) aluminum alloys possess high strength and manufacturability without operations of thermal treatment (TT). In order to investigate the fabrication possibility of the aluminum boron-containing alloy in the form of sheet rolling with an increased strength without TT, Al–2% Cu–1.5% Mn–2% B and Al–2% Cu–1.5% Mn–0.4% Zr–2% B alloys are prepared. To exclude the precipitation of refractory boride particles, smelting is performed in a RELTEK induction furnace providing intense melt stirring. The smelting temperature is 950–1000°C. Pouring is performed into graphite molds 40 × 120 × 200 mm in size. It is established using computational methods (Thermo-Calc) that manganese forms complex borides with aluminum and zirconium at the smelting temperature; herewith, a sufficient amount of manganese remains in liquid, while zirconium is almost absent. The formation of AlB2Mn2 complex boride is proven; however, the amount of manganese remaining in the solid solution is sufficient to form the particles of the Al20Cu2Mn3 phase in amounts of up to 7 wt %. Boron stimulates the isolation of Al3Zr primary crystals in the alloy with zirconium; in connection with this, an amount of zirconium insufficient for hardening remains in the aluminum solid solution. The possibility of fabricating thin-sheet rolling with a thickness smaller than 0.3 mm with homogeneously distributed accumulations of the boride phase with a particle size smaller than 10 μm is shown. A high strength level (up to 543 MPa) is attained without using quenching and aging due to the precipitation of dispersoids of the Al20Cu2Mn3 phase during hot deformation (t = 450°C).  相似文献   

14.
The phase composition of the Al–Ca–Si–Sc system is investigated in aluminum corner uisng computational (Thermo-Calc) and experimental (optical microscopy, scanning electron microscopy, and electron probe microanalysis) methods. The influence of annealing on the structure and hardness of alloys containing 0.3 wt % Sc is investigated in the region up to 550°C. It is shown that the maximum in the hardening curve caused by the isolation of nanoparticles of the Al3Sc (L12) is attained after annealing at temperatures of 300–350°C in alloys belonging to the phase region (Al) + Al4Ca + Al2Si2Ca ((Al) is the aluminum-based solid solution). Scandium completely enters the (Al) composition in alloys of this region, while the silicon concentration is minimal in it. On the other hand, hardening is almost absent in alloys from the (Al) + (Si) + Al2Si2Ca phase region. The possibility in principle to form the casting alloys based on the (Al) + Al4Ca + Al2Si2Ca eutectic hardened without quenching is substantiated.  相似文献   

15.
《粉末冶金学》2013,56(4):334-344
Abstract

The wear and wear corrosion resistance of Al–20Si–XPb–YCu (X=0–10 wt-%, Y=0–3 wt-%) alloys fabricated using powder metallurgy technique and subsequent heat treatments were evaluated using a block on ring tribotest. The microstructures of all aluminium alloys were observed using an optical microscope, a scanning electron microscope and an X-ray energy dispersive spectroscope. The evaluation studied the effects of applied potential and environments of dry air and 3·5 wt-%NaCl aqueous solution. The microstructural analysis showed that Pb was bimodally distributed in Pb containing alloys, and Cu particles formed the intermetallic phase CuAl2. Additionally, the hardness of both Pb and Cu containing alloys increased significantly. The wear and corrosion results showed that the addition of both lead (Pb) and copper (Cu) increased the wear resistance and the corrosion rate, while heat treatments reduced the corrosion rate of most alloys except the Al–Si alloy. Furthermore, comparison of all alloys following heat treatment shows that the wear corrosion resistance of Al–Si alloy is inferior to that of the other alloys. Therefore, addition of Pb and Cu further improved the wear corrosion resistance. Additionally, at anodic potential, the wear corrosion rate and current density of both Al–Si and Al–Si–Cu alloys containing particle Pb were significantly lower than those of alloys containing no Pb, because the layer produced by corrosion comprised Al, O and Pb elements.  相似文献   

16.
The phase equilibria in the Al-Cu-Mg-Zr system at 490°C have been studied for Al-rich alloys with 0.3% Zr and from 0 to 10% Cu or Mg. The (Al) solid solution is found to be in equilibrium with only binary θ(CuAl2) and ZrAl3 and ternary S (CuMgAl2) phases of the ternary Al-Cu-Mg system. The section of the isothermal tetrahedron of the Al-Cu-Mg-Zr phase diagram at 490°C, which corresponds to 0.3% Zr and up to 10% Cu or Mg, is constructed.  相似文献   

17.

This study examined the microstructural evolution and castability of Al–Mg–Si ternary alloys with varying Si contents. Al–6Mg–xSi alloys (where x = 0, 1, 3, 5, and 7; all compositions in mass pct) were examined, with Al–6 mass pct Mg as a base alloy. The results showed that in the ternary alloys with Si ≤ 3 pct, the solidification process ended with the formation of eutectic α-Al–Mg2Si phases generated by a univariant reaction. However, in the case of ternary alloys with Si > 3 pct, solidification was completed with the formation of α-Al–Mg2Si–Si ternary eutectic phases generated by a three-phase invariant reaction. In addition to the eutectic Mg2Si phases, the primary Mg2Si phases formed in each of the ternary alloys, and the size of both sets of phases increased with increasing Si content. The two-phase eutectic α-Al–Mg2Si nucleated from the primary Mg2Si phases. The inoculated Al–6Mg–1Si alloy had the smallest grain size. Moreover, the grain-refining efficacy of the Al–5Ti–B master alloy in the ternary alloys decreased with increasing Si content in the alloys. Despite the poisoning effect of Si on the potency of TiB2 compounds in the inoculated Al–6Mg–1Si alloy, the grain size of the alloy was slightly smaller than that of the Al–6Mg binary alloy. This resulted from the increasing growth restriction factor (induced by Si addition) of the Al–6Mg–1Si alloy. In terms of the castability, the examined alloys showed different levels of susceptibility to hot tearing. Among the alloys, the ternary Al–6Mg–5Si alloy exhibited the highest susceptibility to hot tearing, whereas the Al–6Mg–7Si exhibited the lowest. The severity of hot tearing initiated by the unraveling of the bifilm was determined by the freezing range, grain size, and the amount of eutectic phases at the end of the solidification process.

  相似文献   

18.
采用热力学计算与实验相结合的方法,研究了两种高强韧Al-Zn-Mg-Cu合金铸态及均匀化态的显微组织和相构成.铸态A合金主要由Mg(Zn,Al,Cu)2相和少量Al2Cu相组成,而铸态B合金仅含Mg(Zn,Al,Cu)2相.热力学计算显示,A和B两种合金的实际凝固过程介于Lever Rule和Scheil Model两种模拟结果之间,由于合金成分不同而导致的铸态A和B合金中各相含量差异与Scheil Model模拟所得到的各相摩尔分数变化规律基本一致.经常规工业均匀化处理(460℃保温24 h),铸态A和B合金中存在的Mg(Zn,Al,Cu)2或Al2Cu相均能充分回溶,并得到单相α(Al)基体,这与热力学计算所得到的AlZn-Mg-Cu四元系统在7.5%Zn条件下460℃等温相图相符合.   相似文献   

19.
P/M Al-Zn-Mg-Cu系铝合金中的微量元素   总被引:1,自引:0,他引:1  
总结P/M Al-Zn-Mg-Cu系铝合金中常用的微量元素和最新进展情况,以及各微量元素在合金中的主要作用,并提出了一些观点和建议。  相似文献   

20.
利用光学显微镜、透射电子显微镜、显微硬度计和万能拉伸试验机等分析手段,表征了Al?Zn?Mg?Cu?Zr?(Sc)合金搅拌摩擦焊(FSW)接头的显微组织和性能,探究了Sc元素对改善超高强Al?Zn?Mg?Cu?Zr合金焊接性能的作用机制。结果表明:Al?Zn?Mg?Cu?Zr?(Sc)合金焊接接头具有相似的组织特征,焊核区为动态再结晶组织,由细小均匀的等轴晶组成,包含较高密度的位错线,大部分时效析出相回溶;热力影响区晶粒被拉长,位错密度更高,残留的时效析出相显著粗化;热影响区保留与母材相同的晶粒形态,大部分时效析出的η'相发生长大,少部分粗化成η相。添加质量分数0.17%的Sc,可以使合金FSW接头抗拉强度提升43 MPa,屈服强度提升23 MPa,断后伸长率改善2.3%,焊接系数达到74.1%。Al3(Sc,Zr)二次析出相可以强烈抑制位错、亚晶界、晶界的移动,细化晶粒的同时保留大量的亚结构,且自身可发挥Orowan弥散强化作用。因此,可通过细晶强化、亚结构强化和弥散强化三种方式显著提高合金FSW接头的力学性能。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号