首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differential modulation for two-user cooperative diversity systems   总被引:5,自引:0,他引:5  
This paper introduces a novel differential modulation scheme for a two-user cooperative diversity system which does not require channel state information at either the users or the destination. The performance of fixed decode-and-forward and selection relaying protocols is evaluated in both symmetric and asymmetric interuser-channel cases. The lower bound on the performance of the decode-and-forward protocol is given, while the exact bit-error probability of the selection relaying protocol is thoroughly derived. The decode-and-forward relaying protocol achieves a performance gain when the signal-to-noise ratios in the interuser channels are symmetric and sufficiently high. The selection relaying protocol shows a larger performance gain and does not exhibit an error floor like in the case of the decode-and-forward protocol. In addition, it is robust to the asymmetric interuser channels.  相似文献   

2.
We propose a new scheme for differential modulation in orthogonal frequency-division multiplexing (OFDM) with cyclic delay diversity. Delay diversity is done in a cyclic manner in order not to exceed the guard interval. However, the increased frequency selectivity, and consequently, reduced coherence bandwidth, causes problems for noncoherent detection of differential modulation in frequency direction. Our proposal is able to cope with the increased frequency selectivity,and enables picking up the spatial diversity in frequency-selective channels with unknown delay spread in combination with standard differential modulation techniques. The new scheme is less complex than differential unitary space-time modulation. The overhead due to reference symbols is minimized and the detection delay is reduced, compared with differential modulation in time direction.  相似文献   

3.
Differential space-time modulation   总被引:34,自引:0,他引:34  
Space-time coding and modulation exploit the presence of multiple transmit antennas to improve the performance on multipath radio channels. Thus far, most work on space-time coding has assumed that perfect channel estimates are available at the receiver. In certain situations, however, it may be difficult or costly to estimate the channel accurately, in which case it is natural to consider the design of modulation techniques that do not require channel estimates at the transmitter or receiver. We propose a general approach to differential modulation for multiple transmit antennas based on group codes. This approach ran be applied to any number of transmit and receive antennas, and any signal constellation. We also derive low-complexity differential receivers, error bounds, and modulator design criteria, which we use to construct optimal differential modulation schemes for two transmit antennas. These schemes can be demodulated with or without channel estimates. This permits the receiver to exploit channel estimates when they are available. The performance degrades by approximately 3 dB when estimates are not available  相似文献   

4.
Differential unitary space-time modulation   总被引:1,自引:0,他引:1  
We present a framework for differential modulation with multiple antennas across a continuously fading channel, where neither the transmitter nor the receiver knows the fading coefficients. The framework can be seen as a natural extension of standard differential phase-shift keying commonly used in single-antenna unknown-channel systems. We show how our differential framework links the unknown-channel system with a known-channel system, and we develop performance design criteria. As a special ease, we introduce a class of diagonal signals where only one antenna is active at any time, and demonstrate how these signals may be used to achieve full transmitter diversity and low probability of error  相似文献   

5.
We propose a new bandwidth-efficient differential transmit diversity scheme as an extension of differential space-time block codes from orthogonal designs. The information is coded in both the difference of successive unit-length vectors and the length difference of successive transmit vectors. We derive a simple soft-output detector which does not require knowledge of the channel coefficients or of the noise variance. The new scheme outperforms the existing unit-length approach at high bandwidth-efficiency, particularly in time-varying channels. At the same time the detection complexity is reduced.  相似文献   

6.
We examine the use of differential pulse-position modulation (DPPM) for optical communication systems using intensity modulation with direct detection in the presence of additive white Gaussian noise. We present expressions for the error probability and power spectral density of DPPM. We show that for a given bandwidth, DPPM requires significantly less average power than pulse position modulation (PPM). We also examine the performance of DPPM in the presence of multipath intersymbol interference (ISI). We find that the ISI penalties incurred by PPM and DPPM exhibit very similar dependencies upon the channel RMS delay spread. We discuss the use of chip-rate and multichip-rate equalization to combat ISI. Finally, we describe potential problems caused by the nonuniform bit-rate characteristic of DPPM, and we propose several solutions  相似文献   

7.
Differential space-code modulation for interference suppression   总被引:1,自引:0,他引:1  
Space-time coding has been receiving much attention due to its potentials offered by fully exploiting the spatial and temporal diversities of multiple transmit and receive antennas. A differential space-time modulation (DSTM) scheme was previously proposed for demodulation without channel state information, which is attractive in fast fading channels where accurate channel estimates are difficult to obtain. However, this technique is sensitive to interference and is likely to deteriorate or even break down in a wireless environment, where interference (including intentional and unintentional jamming) signals exist. We propose a new coding and modulation scheme, referred to as the differential space-code modulation (DSCM), which is interference resistant. Our focus is on single-user communications. We show that DSCM outperforms DSTM significantly when interference is present. This advantage is achieved at the cost of a lower data rate or a wider bandwidth or a combination of both. To alleviate this problem, a high-rate DSCM (HR-DSCM) scheme is also presented, which increases the data rate considerably at the cost of a slightly higher bit-error rate (BER), while still maintaining the interference suppression capability  相似文献   

8.
Differential space-time modulation over frequency-selective channels   总被引:6,自引:0,他引:6  
We present herein a new differential space-time-frequency (DSTF) modulation scheme for systems that are equipped with an arbitrary number of transmit antennas and operate in frequency-selective channels. The proposed DSTF modulator consists of a concatenating spectral encoder and differential encoder that offer full spatio-spectral diversity and significant coding gain. A unitary structure is imposed on the differential encoder to admit linear, decoupled maximum likelihood (ML) detection in space and time. Optimum criteria based on pairwise error probability analysis are developed for spectral encoder design. We introduce a class of spectral codes, namely, linear constellation decimation (LCD) codes, which are nonbinary block codes obtained by decimating a phase-shift-keying (PSK) constellation with a group of decimation factors that are co-prime with the constellation size. Since LCD codes encode across a minimally necessary set of subchannels for full diversity, they incur modest decoding complexity among all full-diversity codes. Numerical results are presented to illustrate the performance of the proposed DSTF modulation and coding scheme, which compares favorably with several existing differential space-time schemes in frequency-selective channels.  相似文献   

9.
Cooperative transmit diversity based on superposition modulation   总被引:3,自引:0,他引:3  
We propose a new strategy for cooperative transmit diversity based on superposition modulation and multiuser detection. The new scheme can outperform "classical" cooperative diversity based on decode-and-forward by about 1.5-2 dB in the SNR range of interest and at the same computational complexity.  相似文献   

10.
贾元启  牛戈  穆晓敏  张建康 《电讯技术》2017,57(12):1446-1450
差分空间调制(DSM)由于不依靠信道状态信息(CSI)而备受关注.传统的DSM采用了恒模调制的方法,例如相移键控(PSK),但是在高速传输时PSK对星座图的空间自由度利用很低.针对该问题提出了一种DSM系统中的非恒模调制方法,通过对发射信号做相关预编码处理,使之消除非恒模调制在DSM系统中存在的幅度迭代问题.除此之外,为了使之可以体现分集增益,通过减小传输速率来达到满分集增益,并且加入一个功率均衡项来使该系统可以利用非恒模调制.仿真结果表明所提算法随着信噪比的提高,性能会逐渐优于PSK.  相似文献   

11.
A serially concatenated coding system which can operate without channel state information (CSI) with use of a simple channel-estimation technique is presented. This channel-estimation technique uses the inner decoder's a posteriori probability (APP) information about the transmitted symbols to form a channel estimate for each symbol interval, and is termed "APP channel estimation." The serially concatenated code is comprised of an outer rate-2/3 binary error-control code, separated by a bit interleaver from an inner code consisting of an 8-phase-shift keying (PSK) bit mapping and differential 8-PSK modulation. Coherent decoding provides bit-error rate performance 0.6 dB from 8-PSK capacity for large interleaver sizes. APP channel-estimation decoding without initial CSI over constant and random walk phase models shows near-coherent results, with fractions of a decibel performance loss for random walk and linear phase models.  相似文献   

12.
We present a differential space-time-frequency (DSTF) modulation scheme for systems with two transmit antennas over frequency-selective fading channels. The proposed DSTF scheme employs a concatenation of a spectral encoder and a differential encoder/mapper, which are designed to yield the maximum spatio-spectral diversity and significant coding gain. To reduce the decoding complexity, the differential encoder is designed with a unitary structure that decouples the maximum likelihood (ML) detection in space and time; meanwhile, the spectral encoder utilizes a linear constellation decimation (LCD) coding scheme that encodes across a minimally required set of subchannels for full diversity and, hence, incurs the least decoding complexity among all full-diversity codes.  相似文献   

13.
In this paper, a simple and practical system based on a switched diversity scheme with adaptive modulation is presented. This system provides a reduced number of channel estimation while offering the optimum spectral efficiency given by a selection diversity system. In addition, the switching threshold is easily manipulated so as to make an efficient use of the tradeoff between spectral efficiency and channel estimation overhead. An extension of switched diversity into a multiuser scheduling is later also considered. This switch-based multiuser access scheme results in a lower average feedback load than that for the optimal selection-based multiuser scheme. Numerical results show that we can obtain a trade-off between spectral efficiency and the feedback load by choosing the switching threshold appropriately.  相似文献   

14.
In this paper, we propose an asymmetric diversity modulation (ADM) scheme for a single-source relay system that utilizes the relay?s higher transmission ability as a form of diversity. To achieve this, the proposed method transmits multiple source bits over a high-order modulating relay as a way to provide additional time diversity. The spatial and time diversity then undergo `bit?-based combining at the destination. Using the proposed `bit?-based channel combining method, we derive the theoretical bit error rate (BER) for such a system. Moreover, we investigate the fact that the proposed scheme shows a performance trade-off between bit power and time diversity resulting from the reduced bit power caused by a high-order modulating relay.  相似文献   

15.
As the transmission rateRgets large, differential pulse-code modulation (PCM) when followed by entropy coding forms a source encoding system which performs within 1.53 dB of Shannon's rate distortion function which bounds the performance of any encoding system with a minimum mean-square error (mmse) fidelity criterion. This is true for any ergodic signal source. Furthermore, this source encoder introduces the same amount of uncertainty as the mmse encoder. The 1.53 dB difference between this encoder and the mmse encoder is perceptually so small that it would probably not be noticed by a human user of a high quality (signal-to-noise ratio(S/N) geq 30dB) speech or television source encoding system.  相似文献   

16.
This letter investigates the effect of feedback error on the performance of the joint adaptive modulation and diversity combining (AMDC) scheme which was previously studied with an assumption of error-free feedback channels. We also propose to utilize adaptive diversity to compensate for the performance degradation due to feedback error. We accurately quantify the performance of the joint AMDC scheme in the presence of feedback error, in terms of the average number of combined paths, the average spectral efficiency, and the average bit error rate. Selected numerical examples are presented and discussed to illustrate the effectiveness of the proposed feedback error compensation strategy with adaptive combining. It is observed that the proposed compensation strategy can offer considerable error performance improvement with little loss in processing power and spectral efficiency in comparison with the no compensation case.  相似文献   

17.
Focusing on the problem that differential spatial modulation (DSM) couldn’t obtain transmit diversity and has high decoding complexity,a new differential spatial modulation scheme based on the orthogonal space-time block code was proposed and the proposed scheme is called OSTBC-DSM.There were two matrices in this scheme:the spatial modulation matrix and the symbol matrix.The former was aimed to activate different transmit antennas by setting the position of nonzero elements,and the latter structured symbolic matrix by using orthogonal space-time block codes (OSTBC) as the basic code block.The proposed scheme could obtain full transmit diversity and higher spectral efficiency compared with the conventional DSM schemes.Moreover,the OSTBC-DSM supported linear maximum likelihood (ML) decoding.The simulation results show that under different spectral efficiencies,the proposed OSTBC-DSM scheme has better bit error rate (BER) performance than other schemes.  相似文献   

18.
针对快时变多输入多输出(MIMO)平坦衰落信道,利用时变信道的基扩展模型(BEM),提出了一种差分空时调制方案。差分编码按块进行,发射信号矩阵为对角酉矩阵。通过设计发射端的交织及接收端的解交织,判决反馈差分检测不需要信道状态信息。理论分析和仿真表明,该方案能同时实现最大的天线分集和信道时变性所提供的Doppler分集。  相似文献   

19.
In this paper, joint differential space-time modulation (DSTM) and eigen-beamforming for correlated multiple-input multiple-output (MIMO) fading channels. While DSTM does not require knowledge of each channel realization, the channel's spatial correlation can be easily estimated without training at the receiver and exploited by the transmitter to enhance the error probability performance. A transmission scheme is developed here that combines beamforming with differential multiantenna modulation based on orthogonal space-time block coding. Error probability is analyzed for both spatially correlated and independent Rayleigh fading channels. Based on the error probability analysis, power loading coefficients are derived to improve performance. The analytical and simulation results presented here corroborate that the proposed scheme can achieve considerable performance gain in correlated channels relative to DSTM without beamforming.  相似文献   

20.
Adaptive automatic repeat request (ARQ) schemes are quite effective for throughput enhancement in time-varying mobile channel environments. In this paper, both throughput and packet error rate are analyzed for a selective-repeat ARQ scheme based on a constant-power variable-rate adaptive M-QAM system combined with selection transmit diversity over multiple-input multiple-output Markovian-Nakagami channels. In this analysis, the impact of using outdated and/or imperfect channel state information on the performance of the system is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号