共查询到20条相似文献,搜索用时 31 毫秒
1.
最小覆盖表生成是组合测试研究的关键问题。基于演化搜索的粒子群算法在生成覆盖表时能得到较优的结果,但其性能受配置参数的影响。针对此问题,将one-test-at-a-time策略和自适应粒子群算法相结合,以种群粒子优劣为依据对惯性权重进行自适应调整,使其在覆盖表生成上具有更强的适用能力。为进一步提升算法性能,构造了一个优先级度量函数用于度量每个组合的权值,优先选取权值最高的组合用于单条测试用例的生成。最后,编程实现该算法,并将其与原有粒子群算法在组合测试用例集生成上展开对比性实验分析,结果证实该算法在规模和执行时间上具有竞争力。 相似文献
2.
3.
4.
5.
6.
测试数据生成是组合软件测试的重要部分,生成高质量的测试数据对于软件测试具有重要意义.针对两两组合测试数据生成问题,结合传统遗传算法,加入了精英策略和自适应变异概率,提出了DM-GA( dynamic mutation rates-genetic algorithm)算法,改善了传统遗传算法容易陷入局部最优以及收敛速度慢等不足,并取得了良好的效果.实验结果表明DM-GA算法可以作为一种较理想的两两组合测试数据生成方法. 相似文献
7.
8.
在软件测试中,测试成功的关键是快速、高效的生成测试用例.遗传算法是一种通过模拟自然界生物进化过程搜寻最优解的一种算法,算法通过选择、交叉和变异操作引导算法搜索方向,逐步接近全局最优解.传统遗传算法由于具有较好的全局搜索能力,因此被很多科研人员应用于测试用例生成.但遗传算法的固有缺陷\"早熟收敛\",容易导致算法收敛于局部最优.针对这种情况,提出一种自适应遗传算法,该算法交叉算子和变异算子可根据程序变化自动调整,随后,将改进后的算法应用于一程序的测试用例生成中.测试结果表明该算法在测试用例生成的效率和效果方面优于传统搜索算法和普通改进算法. 相似文献
9.
在计算机软件的生命周期中,由于各种各样的原因,留给软件测试的时间往往不够执行全面而充分的测试。覆盖率和数量作为测试用例质量的主要影响因子,一直受到人们的关注。然而测试用例的执行顺序作为影响测试效率的重要因素,却一直未引起足够的重视。提出了一种基于遗传算法的测试用例生成技术,综合考虑覆盖率、数量和用例的执行顺序三个因子,生成高效的测试用例集。使测试人员能够按照既定的顺序执行用例集,在最短的时间内,完成最重要的软件功能测试。 相似文献
10.
实际测试用例一般不能满足变异测试充分,但遗传算法搜索空间较大,可使用其生成变异测试充分度较高的测试用例集.适应值函数的构造使用分支函数插装法.首先根据杀死弱变异体的必要性条件,构造必要性条件分支函数,插装于源程序中;然后根据可达性条件,构造可达性条件的分支函数并插装.使用基于面向路径的遗传算法来搜索杀死弱变异体的测试用例.将终止条件改为程序最终结果的不同,插装函数不变,生成满足条件的强变异测试用例.对于多重弱变异,按熙可达路径实施等价类划分,每一个等价类采用与单重弱变异相同的方法.实验结果表明,遗传算法可生成杀死各类变异体的测试用例,优于随机生成的测试用例. 相似文献
11.
12.
13.
传统自适应遗传算法(AGA)虽能有效提高收敛速度,却难以增强算法的鲁棒性.以当代种群平均适应度为期望Ex,根据云模型\"3En\"规则确定熵En,由X条件云发生器自适应调整交叉变异概率,提出云自适应遗传算法(CAGA).由于云模型云滴具有随机性和稳定倾向性特点,使交叉变异概率值既具有传统AGA的趋势性,满足快速寻优能力;又具有随机性,且当种群适应度最大时并非绝对的零概率值,有利于提高种群多样性,从而大大改善避免陷入局部最优的能力.典型函数优化实验表明,与标准遗传算法(SGA)和AGA相比,CAGA具有更好的收敛速度和鲁棒性. 相似文献
14.
目前遗传算法研究中,缺乏对历代群体进化规律的充分利用,因此引入学习机制,设计反映个体自主学习进化规律的自适应算子,并且结合现有的改进遗传算法,提出一种新的自适应遗传算法。最后以两个通用的测试函数为例对算法进行性能测试,结果表明,在采用相同参数的条件下,自适应算子能够以较低的代价提高遗传算法的收敛速度,并获得更好的最终优化结果。 相似文献
15.
连接增强问题是个组合优化问题,遗传算法适合解决组合优化问题,一般的遗传算法都采用一重编码方法,这里采取二重编码方法来解决连接增强问题,采取了自适应方法来调整交叉和变异概率,模拟实验中比较了二重编码遗传算法和一重编码的遗传算法的性能。 相似文献
16.
改进的遗传算法在作业调度中的应用 总被引:1,自引:0,他引:1
作业调度问题(JSP)是一类典型的NP-hard问题,遗传算法作为一种通用的优化算法在求解JSP中得到了广泛的应用。本文主要针对作业车间调度问题,基于改进的遗传算法 ,根据种群的进化状况,从而确定种群的适应度值,使之能够保持种群的多样化。 相似文献
17.
汪民乐 《计算技术与自动化》2015,(1):58-62
遗传算法的收敛性分析是遗传算法研究中的重要问题,直接关系到遗传算法的实际应用价值。给出遗传算法全局收敛性的定义,描述当前遗传算法收敛性分析的主要模型,对自适应遗传算法、并行遗传算法、小生境遗传算法等典型遗传算法的收敛性进行分析,给出相关的研究结果,并指出遗传算法收敛性研究的未来发展方向。研究结果对提高遗传算法收敛性具有参考价值。 相似文献
18.
基于父个体相似度的自适应遗传算法 总被引:3,自引:2,他引:3
标准遗传算法在产生后代个体时采用先交叉后变异的策略,一方面当父个体非常相似时,交叉操作很难产生新的个体,影响算法对新的解空间进行搜索,从而导致种群多样性的丧失;另一方面交叉产生的优秀个体再历经变异,极有可能遭破坏而影响算法的收敛性。该文根据染色体的相似性,给出了个体相似度的概念,并在此基础上提出了依据父个体相似度的大小自适应地选择遗传算子(交叉或变异)的遗传算法。仿真实验表明,与采用常规遗传策略的遗传算法相比,新算法能显著提高解的质量和收敛速度。 相似文献
19.
针对遗传算法在函数寻优过程中收敛速度慢、易陷入局部最优解的问题,提出一种采用半初始化和概率扰动策略改进的遗传算法DIAGA。首先,通过引入概率扰动策略增加了算法迭代后期的种群多样性,采用半初始化从根本上改变了算法在全局最优解比较过程中的局限性;然后利用马尔可夫链理论证明了DIAGA的收敛性;最后,对六个标准测试函数进行仿真测试。仿真实验结果表明,提出的DIAGA有效摆脱了局部收敛,在搜索精度、收敛速度上具有明显优势,就多维测试函数而言,寻优精度提高了约29%。 相似文献
20.
CDMA移动通信系统中的最优多用户检测问题是一个NP完备组合优化问题,遗传算法是求解这类问题的有效方法。通过分析CDMA系统多用户检测模型,对几种基于不同遗传算法的多用户检测方法的检测性能进行了实验仿真。仿真结果表明:基于多种群并行进化的分布式遗传算法更适合于多用户检测技术,具有较低的误码率和较强的抗远近效应能力。 相似文献