共查询到14条相似文献,搜索用时 46 毫秒
1.
徐伟 《中国图象图形学报》2014,19(5)
摘要:心脏二尖瓣(mitral annulus,MA)瓣根位置对于心室的分割、心脏建模以及多模态配准很重要。本文识别超声心动图中的二尖瓣瓣根位置。但是超声心动图中图像噪声严重、分辨率低以及成像范围有限等缺点,导致二尖瓣瓣根的识别非常困难。本文提出将加性核支撑向量机(Support Vector Machines ,SVM)分类算法并结合一个局部的上下文特征用于二尖瓣瓣根的识别。本文的主要创新点有:利用图像中的上下文特征提取二尖瓣瓣根部特征;应用最小加性核的SVM分类器快速识别二尖瓣瓣根的候选点;对于候选点应用加权模板,计算候选点的加权密度;在加权密度场中,采用二分查找算法,自适应确定一个阈值,剔除二尖瓣瓣根的错分点,确定二尖瓣瓣根的位置。我们的算法在10个儿科病人的超声四腔心动图上测试,和手动选出的二尖瓣瓣根点相比,平均误差控制在1.52±2.25个像素。 相似文献
2.
3.
针对支持向量机在特征选择方面具有自动选择的功能,提出了一种改进的最少核分类器。在样本测试中使用更少的特征维数,减少识别过程计算量。数值试验表明,改进过的分类器能有效压缩无用的特征属性,具有较强的泛化能力。 相似文献
4.
针对说话人识别实际应用中训练数据不足的问题,选取GMM-UBM作为基准系统模型,用EigenVoice对其作自适应,应用泛化能力较强的多项式核函数和学习能力较强的径向基核函数进行线性加权组合后的组合核函数进行模型参数优化,并用多重网格搜索法确定核函数的最优参数,采用DAG方法实现SVM核函数的多元分类.在仿真实验中评估了线性核、多项式核、径向基核以及组合核函数,实验结果表明,在采用正确的参数前提下,在不同的多分类策略、自适应时间、信噪比和不同的说话人数量的情况下,组合核函数的识别性能明显都优于其它三个单核函数. 相似文献
5.
Web应用高速发展的同时产生了大量安全漏洞,跨站脚本攻击(XSS)就是危害最为严重的Web漏洞之一,而基于规则的传统XSS检测工具难以检测未知的和变形的XSS。为了应对未知的和变形的XSS,文中提出了一种基于支持向量机(SVM)分类器的XSS攻击检测方案。该方案在大量分析XSS攻击样本及其变形样本和正常样本的基础上,提取最具代表性的五维特征并将这些特征向量化,然后进行SVM算法的训练和测试。通过准确率、召回率和误报率3个指标来对分类器的检测效果进行评价,并优化特征提取方式。改进后的SVM分类器与传统工具和普通SVM相比性能均有所提升。 相似文献
6.
GMM与SVM的建模和识别性能具有较好的互补性,因此GMM-SVM在语种识别中得到广泛使用,以其为基础的GMM-MMI-SVM已成为语种识别的主流研究方法.但是SVM在判别时仅仅使用了训练样本中的一些特殊样本即支持向量,并没有使用全部样本,从而影响了系统识别性能的进一步提高.针对上述问题,提出一种基于核Fisher判别的分类算法-GMM-MMI-KFD.该算法的核心思想是用核Fisher准则(KFD)替代SVM分类准则,从语音片段中提取出特征向量序列,分别通过GMM-MMI分类器与GMM-KFD分类器进行判决打分.相对SVM,KFD更注重语音数据非线性分布的特点,并且将样本向高维空间H上投影后可以最大限度地增大类间距,减小类内距.实验数据表明,GMM-MMI-KFD方法在语种识别中具有更高的识别率. 相似文献
7.
基于多个混合核函数的SVM决策树算法设计 总被引:5,自引:0,他引:5
不同的核函数具有不同的特性,SVM决策树中每个子SVM面对的分类对象不同,选取的核函数及其参数也应该不同。通过调节混合核函数的参数形成不同的核函数,给出了一个用多个混合核函数训练SVM决策树的多类分类算法。仿真试验表明,该算法与只用一个核函数训练SVM决策树的算法相比,具有较高的分类精度。 相似文献
8.
为提高人脸识别分类器的能力,采用了一种改进的可用于核学习方法的核函数—条件正定核函数。条件正定核函数一般不满足Mercer条件,但可以在核空间中计算样本间的距离,突出样本间的特征差异。对ORL、YALE、ESSEX三个标准人脸数据库进行仿真实验,结果表明基于条件正定核的SVM人脸识别算法在训练时间没有降低的情况下,与其他核函数法相比识别率有较大提高,并且当类别数增加时算法表现出较强的鲁棒性。 相似文献
9.
本文在传统的支持向量机(SVM)分类算法中采用核主成分分析(KPCA)对网络数据进行特征抽取,将高维输入特征转化为新的低维特征;并对SVM的核函数进行改进,采用多项式核函数和径向基核函数混合的组合核函数,具有良好的学习能力和外推能力。最后在KDDCUP1999数据集上进行实验,证明了本文方法能够有效的减少学习样本数及训练时间,在网络危险因素识别中具有更高的检测率和更强的泛化能力。 相似文献
10.
基于改进萤火虫算法的SVM核参数选取 总被引:1,自引:0,他引:1
支持向量机(SVM)是一种性能优异的机器学习算法,其核函数参数的选取对于建模精度以及泛化能力有着重要的影响。提出一种基于改进萤火虫算法的SVM核函数参数选取方法,通过改进萤火虫位置更新公式并在移动过程中引入亮度特征从而确定最佳的SVM核函数参数。实验表明,该算法选取的SVM核函数参数在保证分类器收敛性能的同时,提高了分类精度,取得了良好的优化效果。 相似文献
11.
基于FLD特征提取的SVM人脸表情识别方法 总被引:5,自引:1,他引:5
摘 要 本文通Fisher’s Linear Discriminant(FLD)提取静态人脸表情特征,采用“一对一”支持向量机分类器进行了多种表情识别。在JAFFE人脸表情库上分别进行了测试人参与训练和不参与训练两种方案仿真实验,并与最近邻分类器进行比较,支持向量机都取得了更好的识别结果,说明了支持向量机分类器应用于表情识别是可行的 相似文献
12.
针对说话识别领域短语音导致的训练数据不充分的问题,选择能够突出说话人个性特征的GMM-UBM作为基线系统模型,并引入SVM解决GMM-UBM导致的系统鲁棒性差的问题. 选择不同的核函数对SVM的识别性能有较大的影响,针对多项式核函数泛化能力较强、学习能力较差与径向基核函数学习能力较强、泛化能力较差的特性,对两种单核核函数进行线性加权组合,以使组合核函数兼具各单核的优点. 仿真实验结果表明,组合核函数SVM的识别率和等错误率明显优于不引入SVM的GMM-UBM的基线系统及其它三个单核函数,并在不同信噪比情况下也兼顾了系统识别准确率与鲁棒性. 相似文献
13.
采用时频分析和支持向量机(SVM)相结合,提出一种压缩机故障识别新方法。首先利用Labview软件平台,对压缩机振动信号进行时频分析;然后提取出空气压缩机故障信号的特征向量,组成训练样本和测试样本;最后使用一对一方法构造成多元支持向量机分类器,利用序列最小优化(S M O)算法对故障样本进行训练,实现了压缩机的故障识别。实验测试表明,该分类器有较高故障诊断效率且性能良好,适合压缩机的故障识别。 相似文献
14.
The electromyography (EMG) signal is a bioelectrical signal variation, generated in muscles during voluntary or involuntary muscle activities. The muscle activities such as contraction or relaxation are always controlled by the nervous system. The EMG signal is a complicated biomedical signal due to anatomical/physiological properties of the muscles and its noisy environment. In this paper, a classification technique is proposed to classify signals required for a prosperous arm prosthesis control by using surface EMG signals. This work uses recorded EMG signals generated by biceps and triceps muscles for four different movements. Each signal has one single pattern and it is essential to separate and classify these patterns properly. Discriminant analysis and support vector machine (SVM) classifier have been used to classify four different arm movement signals. Prior to classification, proper feature vectors are derived from the signal. The feature vectors are generated by using mean absolute value (MAV). These feature vectors are provided as inputs to the identification/classification system. Discriminant analysis using five different approaches, classification accuracy rates achieved from very good (98%) to poor (96%) by using 10-fold cross validation. SVM classifier gives a very good average accuracy rate (99%) for four movements with the classification error rate 1%. Correct classification rates of the applied techniques are very high which can be used to classify EMG signals for prosperous arm prosthesis control studies. 相似文献