首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
由于公交客流量是公交系统发展规划的基础依据,因此提高公交客流量预测的准确性有利于城市公交的发展。利用粒子群算法优化参数的良好性能和灰色预测法适合预测不确定因素影响系统的优势,提出用灰色变异粒子群组合预测模型来预测公交客流量,提高公交客流量预测精度,并通过实例对组合预测模型的预测精度和有效性进行了分析。结果表明,此组合预测模型的预测精度优于单一的灰色预测模型,也优于其他几种常用预测算法,能很好地预测公交客流量,为公交系统的决策规划提供了可靠的科学数据。  相似文献   

2.
为了科学准确地对铁路解编作业量进行预测,基于变异粒子群算法优化参数的良好性能和灰色预测法对不确定因素影响的系统准确预测的优点,提出了一种灰色变异粒子群组合预测模型,对铁路解编作业量进行准确地预测。并通过实例分析了模型的预测精度和可行性,且与传统的灰色预测模型进行比较。结果表明,灰色变异粒子群组合预测模型对铁路解编作业量预测明显优于传统的灰色预测模型。运用该模型预测未来铁路的解编作业量,以对铁路编组站进行合理编制和检查运营计划,从而为编组站规划和设计提供理论依据。  相似文献   

3.
针对传统的灰色模型在负荷增长速度较快时预测精度低的问题,提出了采用交叉遗传粒子群优化算法代替最小二乘法来优化GM(1,1)模型中参数a、b的方法;介绍了灰色预测原理及其数学模型、CGPSO算法及基于CGPSO算法的优化灰色模型,并根据实际负荷数据进行了仿真实验。结果表明,在负荷增长速度较快时,优化灰色模型的预测精度明显高于GM(1,1)模型,能够应用于电力系统的中长期负荷预测,拓展了灰色模型的适用范围。  相似文献   

4.
运用灰色系统理论,建立巢湖地区全社会用电量的GM(1,1)预测模型,并运用粒子群算法对模型参数进行优化,从根本上克服误差。结果表明,应用此修正模型进行预测研究,精度很高,具有一定的应用价值。  相似文献   

5.
蒋喆 《计算机仿真》2010,27(8):282-285
研究电力系统负荷预测问题,针对电力负荷过程存在非线性技术,为提高预测精度,保证安全供电,改变传统方法,提出改进支持向量机的预测性能,更精确地预测电力负荷,提出粒子群算法优化支持向量机(PSO-SVM)的电力负荷预测方法。PSO-SVM用粒子群算法优化支持向量机参数,减少了对支持向量机参数选择的盲目性,获得较优的支持向量机预测模型。并以贵州省为例在2008.7-2009.7电力负荷数据进行测试和分析,并进行仿真。实验结果表明,在电力负荷预测中,PSO-SVM比SVM和BPNN有着更高的预测精度,测试表明PSO-SVM方法用于电力负荷预测是有效可行的。  相似文献   

6.
针对现有短时预测方法精度不高及电网负荷数据不确定性变化的问题,提出一种基于高斯变异粒子群优化(GPSO)的长短时记忆神经网络(LSTM)负荷预测模型,实现对短时负荷数据的高精度预测。方案首先对负荷序列数据进行预处理,提升数据之间的相关性。进一步引入非线性惯性权重加速粒子收敛速度,同时结合自适应高斯变异操作减小粒子陷入局部最优的风险,从而提升了PSO算法的寻优能力。实验结果证明,改进的粒子群优化算法能够提升LSTM模型的预测性能,验证了提出方法的有效性。与已有的预测模型相比,GPSO-LSTM模型有着更优的预测能力。  相似文献   

7.
改进粒子群-BP神经网络模型的短期电力负荷预测   总被引:10,自引:2,他引:8  
师彪  李郁侠  于新花  闫旺 《计算机应用》2009,29(4):1036-1039
为了准确、快速、高效地预测电网短期负荷,提出了改进的粒子群算法(MPSO),并与BP算法相结合,形成改进的粒子群—BP(MPSO-BP)神经网络算法,用此算法训练神经网络,实现了神经网络参数优化,得到了基于MPSO-BP算法的神经网络模型。综合考虑气象、天气、日期类型等影响负荷的因素,进行电网短期负荷预测。算例分析表明,与传统BP神经网络法和PSO-BP神经网络方法相比,该方法改善了BP神经网络的泛化能力,预测精度高,收敛速度快,对电力系统短期负荷具有良好的预测能力。  相似文献   

8.
针对普通灰色预测模型在预测过程中当历史数据有较大波动时预测精度较差的问题,对两次拟合等维灰色预测模型进行研究,并对其进行改进,通过对华北某地区用电量的建模预测验证其有效性。两次拟合灰色预测模型是利用一次拟合的结果重新建模,经研究发现当历史数据有较大波动时,利用两次拟合灰色预测模型进行预测可以提高模型的精度。  相似文献   

9.
将发电站视为本征性灰色系统,对电力负荷建立灰色预测模型,并根据实际结果对原始模型进行优化。使用序列平移、残差校正、等维新息等方法提高了模型的精度。在实际应用中证明了预测结果的可信度。  相似文献   

10.
吴君 《测控技术》2018,37(9):26-28
为了提高煤矿电力负荷预测的精度,解决传统灰色模型的缺陷,建立了改进的灰色模型。将背景值进行优化生成权重系数,通过人工蜂群算法找出合适的背景值生成权重系数,以误差最小为目标,得到了负荷预测值。通过Matlab R2012a仿真,与传统的灰色模型相比,该模型的预测精度更高,证明该方法是有效的。  相似文献   

11.
为了提高微粒群算法优化高维目标的性能,采用了个体惯性权重自适应调整的微粒群算法,其中每个微粒拥有属于个体的惯性权重。通过对每个微粒的适应值进行评价对惯性权重动态和自适应,以加快其收敛速度并逃离局部最优。为了增强搜索性能,基于高斯变异和随机变异的变异算子被引入。该方法以及其他3种不同微粒群优化算法对4个经典函数在100、200和400维数下进行仿真的结果比较证明此算法在解决高维数目标时具有良好性能。  相似文献   

12.
邵洪涛  秦亮曦  何莹 《微机发展》2012,(8):30-33,38
为了克服粒子群优化算法容易陷入局部最优、早熟收敛的缺点,提出了一种带有变异算子的非线性惯性权重粒子群优化算法。该算法以粒子群算法为基础,首先采用非线性递减策略对惯性权重进行调整,平衡粒子群优化算法的全局和局部搜索能力。当出现早熟收敛时,再引入变异算子,对群体粒子的最优解做随机扰动提高算法跳出局部极值的能力。用三种经典测试函数进行测试,试验结果表明,改进算法与粒子群算法相比,能够摆脱局部最优,得到全局最优解,同时具有较高的收敛精度和较快的收敛速度。  相似文献   

13.
陶新民  刘福荣  刘玉  童智靖 《软件学报》2012,23(7):1805-1815
为了改善粒子群算法易早熟收敛、精度低等缺点,提出一种多尺度协同变异的粒子群优化算法,并证明了该算法以概率1收敛到全局最优解.算法采用多尺度高斯变异机制实现局部解逃逸.在算法初期阶段,利用大尺度变异及均匀变异算子实现全局最优解空间的快速定位;随着适应值的提升,变异尺度随之降低;最终在算法后期阶段,利用小尺度变异算子完成局部精确解空间的搜索.将算法应用6个典型复杂函数优化问题,并同其他带变异操作的PSO算法比较,结果表明,该算法在收敛速度及稳定性上有显著提高.  相似文献   

14.
粒子群算法是一种随机全局优化算法,由于算法具有简单、易于实现、可调参数少等特点,得到了广泛的研究和应用。论文在研究标准算法原理的基础上,在算法搜索过程中引入变异算子,克服了标准算法易陷入局部极优点的不足。将改进后的算法运用常见的几个测试函数进行了寻优仿真,仿真结果验证了带变异算子的粒子群算法的可行性和有效性。  相似文献   

15.
针对粒子群算法(Particle Swarm Optimization,PSO)容易陷入局部最优、收敛速度过慢、精度低等问题,提出一种新的变异策略,对全局最优粒子进行逐维的重心反向学习变异.逐维变异降低了维间干扰,通过更新全局最优位置引领粒子向更好的位置飞行,同时加强了种群的多样性.仿真实验与基于柯西变异的混合粒子群算法(HPSO)及重心反向粒子群优化算法(COPSO)在9个标准测试函数上进行了对比.实验表明逐维重心反向变异算法(DCOPSO)具有较高的收敛速度及精度.  相似文献   

16.
针对电力系统无功优化的特点,本文提出以有功网损最小为目标函数,以负荷节点电压质量和PV发电机节点无功出力为罚函数.以有功功率和无功功率为约束条件的数学模型,并应用改进的粒子群算法对无功优化问题进行求斛。该算法在权重系数和不活动粒子两方面进行改进,有效地解决了进化过程中陷入局部最优和搜索精度差的缺点。最后,将改进后的粒子群算法应用于IEEE14节电力系统进行无功优化算例分析,仿真结果验证了该算法解决电力系统无功优化问题的有效性和可行性。  相似文献   

17.
为克服粒子群算法容易陷入局部最优和全局寻优精度不高的缺点,通过对算法的局部寻优和全局寻优的特点进行分析,首先使用正态分布衰减策略改进惯性权重;同时基于算法运行的时间自适应采用不同的基于高斯分布及柯西分布的变异优化策略,解决全局搜索和局部开发能力的不平衡问题,实现了局部寻优和全局寻优的双重优化,满足了提高寻优速度和寻优精...  相似文献   

18.
对灰色预测算法进行了研究。在GM(1,1)模型中,发展系数a和灰色作用量u是两个关键的参数,对系统的性能有较大的影响。传统的方法使用最小二乘法来求解,不仅计算复杂,而且预测结果的误差也较大。论文对此进行了研究,并提出了一种改进的灰色预测算法PSOGP。PSOGP的主体仍使用GM(1,1)模型,但在求解相关参数时,PSOGP使用了粒子群优化算法。仿真试验表明,与经典的GM(1,1)模型相比,PSOGP算法的预测精度得到了较大的提高。  相似文献   

19.
针对支持向量回归机在预测建模中的参数选取问题,提出一种基于混沌自适应策略的粒子群优化支持向量回归机参数的方法。采用混沌映射算法和聚合度自适应判断策略,增强种群的全局寻优性能,提升粒子的多样性,从而避免种群过早收敛。充分考虑天气、节假日、居民消费等因素的影响,提出一种改进的支持向量回归机预测模型并与粒子群算法的支持向量回归机模型进行对比分析。分析结果表明,该预测模型可将预测的均方根误差降低约40%,绝对值误差降低约42%,相对误差降低约46%,仿真结果验证了所提方法优化了支持向量回归机参数,改善了预测效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号