首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
Oho E  Miyamoto M 《Scanning》2004,26(5):250-255
A scanning electron microscope (SEM) system equipped with a motor drive specimen stage fully controlled with a personal computer (PC) has been utilized for obtaining ultralow magnification SEM images. This modem motor drive stage works as a mechanical scanning device. To produce ultra-low magnification SEM images, we use a successful combination of the mechanical scanning, electronic scanning, and digital image processing techniques. This new method is extremely labor and time saving for ultra-low magnification and wide-area observation. The option of ultra-low magnification observation (while maintaining the original SEM functions and performance) is important during a scanning electron microscopy session.  相似文献   

2.
Using small Pb crystals deposited in situ on a partially contaminated Si (100) crystal, we demonstrate that a commercial scanning electron microscope (SEM) can easily be converted into a scanning low-energy electron microscope (SLEEM). Although the contrast mechanism is much more complicated than that in nonscanning LEEM because not only one diffracted monochromatic beam and its close environment are used for imaging, but several diffracted beams and a wide energy spectrum of electrons of different origin (secondary electrons, inelastically andelastically scattered electrons) are used, SLEEM is a valuable addition to the standard SEM because it provides an additional structure- and orientation-sensitive contrast mechanism in crystalline materials, a low sampling depth, and high intensity at low energies.  相似文献   

3.
4.
A cryo-specimen storage system for low-temperature scanning electron microscopy (LTSEM) specimens is described, which: liberates multi-specimen experiments from sampling restrictions imposed by the rate at which LTSEM specimens can be examined in the SEM; provides security against experiment loss resulting from breakdown of the SEM or cryo-system; enables collection of specimens in the field or in laboratories remote from the SEM laboratory; and facilitates international air transport of LTSEM specimens. The components of the system, which has a capacity of 98 stub-mounted specimens, are readily made in a laboratory workshop. The details of the design may be altered to suit particular specimen types or experimental approaches.  相似文献   

5.
A new smoothing filter has been developed for noise removal of scanning electron microscopy (SEM) images. We call this the complex hysteresis smoothing (CHS) filter. It is much easier to use for SEM operators than any other conventional smoothing filter, and it rarely produces processing artifacts because it does not utilize a definite mask (which usually has processing parameters of size, shape, weight, and the number of iterations) like a common averaging filter or a complicated filter shape in the Fourier domain. Its criterion for distinguishing noise depends simply on the amplitude of the SEM signal. When applied to several images with different characteristics, it is shown that the present method has a high performance with some original advantages.  相似文献   

6.
J T Thong  K W Lee  W K Wong 《Scanning》2001,23(6):395-402
We describe a vector scanning system to reduce charging effects during scanning electron microscope (SEM) imaging. The vector scan technique exploits the intrinsic charge decay mechanism of the specimen to improve imaging conditions. We compare SEM images obtained by conventional raster scanning versus vector scanning to demonstrate that vector scanning successfully reduces specimen-charging artifacts.  相似文献   

7.
Oho E  Toyomura K 《Scanning》2001,23(5):351-356
Characteristics of the superposition diffractogram used for precisely estimating scanning electron microscopy (SEM) resolution are investigated. It is shown that the choice of pixel density to satisfy the sampling theorem, the direction of scanning, the choice of image shift direction, the properties of the specimen, the effect of external disturbances such as vibration and stray magnetic fields, and the effect of the window function required in the Fourier transform, are all factors which must be considered in order to make the superposition diffractogram a practical technique. An additional important improvement required to exploit fully the ability of the superposition diffractogram, which potentially is very high, is a special scanning mode which employs a digital scan generator, and digital image processing technology with autocorrelation functions.  相似文献   

8.
Fully automated or semi-automated scanning electron microscopes (SEM) are now commonly used in semiconductor production and other forms of manufacturing. Testing and proving that the instrument is performing at a satisfactory level of sharpness is an important aspect of quality control. The application of Fourier analysis techniques to the analysis of SEM images is a useful methodology for sharpness measurement. In this paper, a statistical measure known as the multivariate kurtosis is proposed as an additional useful measure of the sharpness of SEM images. Kurtosis is designed to be a measure of the degree of departure of a probability distribution. For selected SEM images, the two-dimensional spatial Fourier transforms were computed. Then the bivariate kurtosis of this Fourier transform was calculated as though it were a probability distribution. Kurtosis has the distinct advantage that it is a parametric (i.e., a dimensionless) measure and is sensitive to the presence of the high spatial frequencies necessary for acceptable levels of image sharpness. The applications of this method to SEM metrology will be discussed.  相似文献   

9.
Vladár AE  Radi Z  Postek MT  Joy DC 《Scanning》2006,28(3):133-141
Experimental nanotips have shown significant improvement in the resolution performance of a cold field emission scanning electron microscope (SEM). Nanotip electron sources are very sharp electron emitter tips used as a replacement for the conventional tungsten field emission (FE) electron sources. Nanotips offer higher brightness and smaller electron source size. An electron microscope equipped with a nanotip electron gun can provide images with higher spatial resolution and with better signal-to-noise ratio. This could present a considerable advantage over the current SEM electron gun technology if the tips are sufficiently long-lasting and stable for practical use. In this study, an older field-emission critical dimension (CD) SEM was used as an experimental test platform. Substitution of tungsten nanotips for the regular cathodes required modification of the electron gun circuitry and preparation of nanotips that properly fit the electron gun assembly. In addition, this work contains the results of the modeling and theoretical calculation of the electron gun performance for regular and nanotips, the preparation of the SEM including the design and assembly of a measuring system for essential instrument parameters, design and modification of the electron gun control electronics, development of a procedure for tip exchange, and tests of regular emitter, sharp emitter and nanotips. Nanotip fabrication and characterization procedures were also developed. Using a "sharp" tip as an intermediate to the nanotip clearly demonstrated an improvement in the performance of the test SEM. This and the results of the theoretical assessment gave support for the installation of the nanotips as the next step and pointed to potentially even better performance. Images taken with experimental nanotips showed a minimum two-fold improvement in resolution performance than the specification of the test SEM. The stability of the nanotip electron gun was excellent; the tip stayed useful for high-resolution imaging for several hours during many days of tests. The tip lifetime was found to be several months in light use. This paper summarizes the current state of the work and points to future possibilities that will open when electron guns can be designed to take full advantage of the nanotip electron emitters.  相似文献   

10.
Oho E 《Scanning》2004,26(3):140-146
Complex hysteresis smoothing (CHS), which was developed for noise removal of scanning electron microscopy (SEM) images some years ago, is utilized in acquisition of an SEM image. When using CHS together, recording time can be reduced without problems by about one-third under the condition of SEM signal with a comparatively high signal-to-noise ratio (SNR). We do not recognize artificiality in a CHS-filtered image, because it has some advantages, that is, no degradation of resolution, only one easily chosen processing parameter (this parameter can be fixed and used in this study), and no processing artifacts. This originates in the fact that its criterion for distinguishing noise depends simply on the amplitude of the SEM signal. The automation of reduction in acquisition time is not difficult, because CHS successfully works for almost all varieties of SEM images with a fairly high SNR.  相似文献   

11.
The modern high-performance personal computer (PC) has very recently expanded the range of utilization of digital scanning electron microscopy (SEM) images, and the PC will be used increasingly with SEMs. However, the image quality of digital SEM images may be considerably influenced by scanning and digitization conditions. In particular, the effects of the aliasing error peculiar to digital data are often serious in the low-magnification acquisition (undersampling) of SEM images, and moreover even a high-magnification image (oversampling) is disturbed by the undersampled noise (a sort of aliasing error). Furthermore, the signal-to-noise ratio of a digitized SEM image is closely related to the performance of the analog-to-digital converter. To prevent a flood of low-quality digital images with artifacts by the aliasing and additional noise, we propose a method using very high-density sampling (scanning). In addition, we will discuss how to handle digital SEM images from the point of view of the sampling and quantization.  相似文献   

12.
Raynald Gauvin 《Scanning》1999,21(6):388-393
This paper presents a new correction procedure for quantitative x-ray microanalysis in the environmental or variable pressure scanning electron microscope (SEM). This method is based on a plot of the measured intensity as a function of the fraction of nonscattered beam intensity, fp. The theory predicts that the plot should be linear and the corrected intensity is given for fp = 1. The advantage is that such a plot is valid for any measured pressures, which is not the case with the usual pressure correction methods. To use this method, a simple equation is derived to compute fp. Other variations of this correction procedure are also presented. Comparison with measurements performed by Mansfield (1999) show the great consistency of this method.  相似文献   

13.
基于连续扫描方式的激光共焦扫描显微镜的研制   总被引:2,自引:2,他引:0  
研发了一套基于连续扫描的激光共焦扫描显微镜(laser confocal scanning microscopy,LCSM)系统。该系统采用工作台连续运动方式实现扫描,提出了利用单次采集的数据滤除随机噪声的方法,避免了多帧取平均对成像速度造成的影响。实现连续扫描的关键在于解决工作台运动与数据采集的同步问题,利用采集卡有限采集模式,合理匹配工作台参数和采集参数,成功解决了这一问题。详细介绍了影响分辨率的因素,通过合理选取探测器针孔直径,取样间隔,确保了实现高分辨率的要求。系统利用Visual C#开发的控制平台,成功地对生物细胞进行了扫描成像。实验结果表明:基于连续扫描的LCSM具有较高的分辨率,生成的显微图像没有任何畸变,并且成像速度有了大幅度提高。  相似文献   

14.
I Müllerová 《Scanning》2001,23(6):379-394
The modern trend towards low electron energies in scanning electron microscopy (SEM), characterised by lowering the acceleration voltages in low-voltage SEM (LVSEM) or by utilising a retarding-field optical element in low-energy SEM (LESEM), makes the energy range where new contrasts appear accessible. This range is further extended by a scanning low-energy electron microscope (SLEEM) fitted with a cathode lens that achieves nearly constant spatial resolution throughout the energy scale. This enables one to optimise freely the electron beam energy according to the given task. At low energies, there exist classes of image contrast that make particular specimen data visible most effectively or even exclusively within certain energy intervals or at certain energy values. Some contrasts are well understood and can presently be utilised for practical surface examinations, but others have not yet been reliably explained and therefore supplementary experiments are needed.  相似文献   

15.
Rouse JH  White ST  Ferguson GS 《Scanning》2004,26(3):131-134
A method for preparing and observing clay platelets for size and shape analysis using scanning electron microscopy (SEM) was developed. Samples of the clay platelets were prepared by polyelectrolyte-assisted adsorption onto a pyrolytic graphite surface. The use of graphite as a substrate was advantageous because of the low number of secondary electrons emitted from it during imaging by SEM. The resulting low background noise allowed the emission from the approximately 1 nm thick clay sheets to be clearly visualized. Images of centrifuged montmorillonite showed large exfoliated platelets with lateral dimensions between 200 and 600 nm. In contrast, uncentrifuged montmorillonite appeared to contain a large amount of unexfoliated clusters. Although it was not possible to obtain high-quality images of the smaller sheets of Laponite RD, the images of this material did contain size features comparable to the approximately 30 nm2 size reported previously using light scattering, as well as transmission electron and atomic force microscopies.  相似文献   

16.
Since the end of the last millennium, the focused ion beam scanning electron microscopy (FIB‐SEM) has progressively found use in biological research. This instrument is a scanning electron microscope (SEM) with an attached gallium ion column and the 2 beams, electrons and ions (FIB) are focused on one coincident point. The main application is the acquisition of three‐dimensional data, FIB‐SEM tomography. With the ion beam, some nanometres of the surface are removed and the remaining block‐face is imaged with the electron beam in a repetitive manner. The instrument can also be used to cut open biological structures to get access to internal structures or to prepare thin lamella for imaging by (cryo‐) transmission electron microscopy. Here, we will present an overview of the development of FIB‐SEM and discuss a few points about sample preparation and imaging.  相似文献   

17.
Common and different aspects of scanning electron microscope (SEM) and scanning ion microscope (SIM) images are discussed from a viewpoint of interaction between ion or electron beams and specimens. The SIM images [mostly using 30 keV Ga focused ion beam (FIB)] are sensitive to the sample surface as well as to low-voltage SEM images. Reasons for the SIM images as follows: (1) no backscattered-electron excitation; (2) low yields of backscattered ions; and (3) short ion ranges of 20–40nm, being of the same order of escape depth of secondary electrons (SE) [=(3–5) times the SE mean free path]. Beam charging, channeling, contamination, and surface sputtering are also commented upon.  相似文献   

18.
针对薄板类工件成像,计算机分层成像(CL)技术因无损、直观而应用广泛。 CL 成像方法主要分为直线扫描和圆周扫 描, 直线扫描效率高, 圆周扫描数据均匀性好。 然而, 由于两者的投影数据均不完备, 均存在分层图像混叠及图像边缘不清 晰的问题。 基于此,提出了一种复合扫描 CL(HyCL)成像方法, 由直线扫描和圆周扫描组成。 建立了几何模型, 采用同时迭代 重建图像(SIRT)算法进行了仿真及成像实验, 分析了成像效果及层间混叠表现。 实验结果表明, 相比于相对平行直线移动扫 描 CL(PTCL)、正交直线移动扫描 CL(OTCL)及圆周扫描 CL(RCL), HyCL 的重建结果能够有效减少混叠伪影, 图像特征轮廓 信息能够保留得较为清晰且均匀, 对比度更好。  相似文献   

19.
A procedure is described for the detection and direct enumeration of the number of particles that can potentially be released from wiping materials. The technique involves the use of a scanning electron microscope (SEM) to count the particles from a wiper, first by releasing them in deionized water and then filtering the entirety of the liquid through a submicron membrane filter. To obtain an accurate count, the filtration must produce a normal distribution of particles on the filter, and hence the details of the filtering technique must be performed in a very precise manner. The counting of the particles on the filter is accomplished by scanning a statistically representative number of fields and averaging the number of particles per field. The results can then be checked for statistical precision and accuracy. Our criterion for successful measurement was ± 10% accuracy at a 95% confidence level. We believe that the SEM method described in this article is sensitive enough to quantify very low levels of total particle burden without succumbing to the variability and limitations encountered with other enumeration techniques. Typically, this technique enables the accurate counting of particles of all shapes from below 0.1 μm to hundreds of micrometers. In addition, the SEM technique allows for morphologic identification of particles as well as chemical identification if an energy-dispersive x-ray system (EDS) is employed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号