共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
5.
Solar energy is one of the most popular clean energy sources and is a promising alternative to fulfill the increasing energy demands of modern society.Solar cells have long been under intensive research attention for harvesting energy from sunlight with a high power-conversion efficiency and low cost.However,the power outputs of photovoltaic devices suffer from fluctuations due to the intermittent instinct of the solar radiation.Integrating solar cells and energystorage devices as self-powering systems may solve this problem through the simultaneous storage of the electricity and manipulation of the energy output.This review summarizes the research progress in the integration of new-generation solar cells with supercapacitors,with emphasis on the structures,materials,performance,and new design features.The current challenges and future prospects are discussed with the aim of expanding research and development in this field. 相似文献
6.
7.
8.
Zhai Y Dou Y Zhao D Fulvio PF Mayes RT Dai S 《Advanced materials (Deerfield Beach, Fla.)》2011,23(42):4828-4850
Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template-synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon-based electrode materials are summarized, including activated carbons, carbon nanotubes, and template-synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed. 相似文献
9.
Functional Hybrid materials based on conducting polymers and inorganic photo-electroactive species provide a wealth of opportunities for the development of novel materials with improved properties. Polyoxometalates are one type of well-known inorganic species with most interesting photo-electrochemical activity. They are perfect models for nanometer-sized oxide quantum-dots both concerning structure, topology and electrochemical and photochemical properties. Yet, they have not been applied as materials because of their molecular nature (i.e., soluble in most solvents or electrolytes). In our group we have recently developed a research line dealing with the integration of these fascinating clusters in conducting polymer matrices to yield functional hybrid materials. Our past emphasis was on electroactivity for energy-storage applications but these materials can also be used, as it is shown here, for photoelectrochemical applications. 相似文献
10.
New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted. 相似文献
11.
Diao Chunli Wang Hao Wang Boying He Yiqian Hou Yabin Zheng Haiwu 《Journal of Materials Science: Materials in Electronics》2022,33(27):21199-21222
Journal of Materials Science: Materials in Electronics - Due to high power density, fast charge/discharge speed, and high reliability, dielectric capacitors are widely used in pulsed power systems... 相似文献
12.
N. V. Kamanina S. V. Serov N. A. Shurpo S. V. Likhomanova D. N. Timonin P. V. Kuzhakov N. N. Rozhkova I. V. Kityk K. J. Plucinski D. P. Uskokovic 《Journal of Materials Science: Materials in Electronics》2012,23(8):1538-1542
Based on the model polyimide systems the principal nonlinear optical features, such as laser induced refractive indices changes, nonlinear refraction and third order susceptibility have been established during their doping with fullerenes, shungites, carbon nanotubes, carbon nanofibers, quantum dots, etc. The evidence of the correlation between laser induced refractive indices and charge carrier mobility has been obtained. The features of new nanocomposites for their possible optoelectronics, laser techniques and solar energy applications have been considered. 相似文献
14.
15.
Black phosphorus is a potential candidate material for next-generation energy storage devices and has attracted tremendous interest because of its advantageous structural and electrochemical properties, including its large theoretical capacity, high carrier mobility, and low redox potential. However, its practical applicability has remained low owing to its difficult of preparation, large volume expansion during cycling, and poor electronic conductivity. To this end, there have been significant efforts to improve its synthesis methods and electrochemical performance. A number of black-phosphorus-based composite materials have been developed and investigated. Herein, we provide an up-to-date account of the recent progress made in research on black-phosphorus-based materials for use in rechargeable batteries and supercapacitors. We review the available synthesis methods and basic properties of black phosphorus and discuss its applicability in Li-, Na-, K-, Mg-, Al-ion and Li-S batteries as well as supercapacitors. We also summarize the existing challenges and future opportunities and offer our perspective on the possible directions for future research in this area. 相似文献
16.
17.
Ángela Viviana Ruales-Salcedo Oscar Andrés Prado-Rubio Andrés Felipe Rojas González 《Clean Technologies and Environmental Policy》2018,20(7):1515-1526
In developing countries, there is constant concern regarding ways to achieve a sustainable socioeconomic growth in a dynamic, globalized environment. This is a multifaceted problem which is so complex that conventionally it is addressed inappropriately, due to the conflict between economic, technical, and social objectives. Studies have indicated that one of the limiting factors for rural development is related to energy access. In this study, a robust methodology is proposed, based on complementary experimental approaches, so as to produce biochar and assess biomass energy storage capacity. As a case study, Colombian grape crop waste was investigated, in order to identify its capacity for energy storage and generation, by means of pyrolysis. Raw materials were analyzed through proximate and ultimate analyses, higher heating value, thermogravimetry, and morphology analysis, using petrographic examination. Results showed that raw materials had a high level of variance in physicochemical properties. Biochar was produced from grape waste through the devolatilization process, at both 600 and 800 °C, in a tubular reactor. The biochar produced through pyrolysis was characterized by higher energy storage capacity and low property variance. Finally, using these experimental results, the biomass was assessed for electric power generation. It was found that waste from one hectare could produce power for approximately four families. This investigation demonstrates the importance of performing various experimental analyses in order to evaluate and understand the energetic potential of lignocellulosic waste. It is believed that this approach produces valuable insights, which are useful for appropriate system process designs, and operations for energy production from lignocellulosic waste. 相似文献
18.
相变储能材料的制备与研究 总被引:2,自引:0,他引:2
选择了几种脂肪酸,依据二元低共熔原理,制备出适合建筑材料使用的二元有机相变储能材料。通过DSC分析了复合储能材料的相变温度、相变焓等热性能,结果表明:当CA∶LA;CA∶MA;CA∶PA的质量比分别为53.45∶46.55∶60.2∶39.8∶61.6∶38.4时,其相变焓和相变温度分别为CA-LA:120.7J/g;20.82℃,CA-MA:120.3J/g;19.15℃,CA-PA:142.9J/g;22.05℃,适合于民用建筑对相变材料的要求。通过SEM分析检测了珍珠岩吸附相变材料后的表面微观变化,结果表明:有机羧酸均匀吸附在多孔基体中,此种材料可以应用于夹心节能建筑围护结构中。 相似文献
19.
20.
储能技术是通过物理或化学变化将某种能量存储,然后在后续过程中释放利用的技术,现多用于电力系统、交通运输、太阳能利用和移动电子等设备中,能够有效节约能源和提高能源利用率。相变储能材料是相变储能技术的关键载体,对其应用起着重要作用。本文对相变储能材料的基本特征、应用领域、储能原理以及分类等方面作了简要的介绍。并依据成分分类,对目前国内外研究的无机类、有机类、金属基及复合类相变储能材料进行了综述。详细介绍了不同材料的种类、性质、优缺点、适用范围等。最后指出了当前相变储能材料存在的不足,并展望了相变储能材料未来的发展方向和应用前景。 相似文献