首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A versatile hybrid finite element scheme consisting of special crack-tip elements and crack face contact elements is developed to analyse a partially closed interface crack between two dissimilar anisotropic elastic materials. The crack-tip element incorporates higher-order asymptotic solutions for an interfacial crack tip. These solutions are obtained from complex variable methods in Stroh formalism. For a closed interfacial crack tip, a generalized contact model in which the crack-tip oscillation is eliminated is adopted in the calculation. The hybrid finite element modelling allows the stress singularity at an open and closed crack tip to be accurately treated. The accuracy and convergence of the developed scheme are tested with respect to the known interface crack solutions. Utilizing this numerical scheme, the stress intensity factors and contact zone are calculated for a finite interface crack between a laminated composite material.  相似文献   

2.
A continuum model is proposed to study the effects of deformation twinning on interface crack kinking in metal/ceramics layered materials. At the final stage of material failure, plastic work hardening exhausts and lattice rotation becomes main mechanism after competing with dislocation gliding. The crack-tip plasticity is established in terms of the second gradient of microrotation due to the coupling effect of the twins. The formed twinning structures not only shield the crack tip, but inhibit further dislocation emission by increasing the near-tip stress levels. A Dislocation-Free Zone (DFZ) can exist in the immediate vicinity of the tip. The model is based on the equivalence of the stresses derived from twin-based crack-tip plasticity, macroscopic plasticity and elasticity on the boundary. The two-parameter characterization of near-tip stress fields is used for the outer plastic zone to account for constraint effects. Crack kinking out of the interface follows the direction of the maximum flow stress from the crack-tip plasticity. The DFZ size and the crack-tip shielding ratio, as well as the kink angle, are obtained for various values of low hardening exponents and crack-tip constraints.  相似文献   

3.
4.
Accurate yield surfaces of plane strain single-edge-cracked specimens having shallow as well as deep cracks are developed using finite element limit analyses and monotonic interpolation functions. Fully plastic shallow crack configurations are classified based on certain aspects of the yield surfaces. Relationships between incremental plastic crack tip and crack mouth opening displacements and incremental load point displacement/rotation are obtained for a wide range of relative crack depths and loading ratios. Fully plastic crack-tip fields for a sufficiently deep crack in a single-edge cracked specimen are examined to provide the stress triaxiality and the angular orientation of flow line at the crack tip in terms of the remotely applied tension-to-bending ratio. Evidence for fully plastic crack-tip stress fields consisting of an incomplete Prandtl fan and a crack plane constant state region is discussed.  相似文献   

5.
For a crack in a homogeneous material the effect of plastic anisotropy on crack-tip blunting and on the near-tip stress and strain fields is analyzed numerically. The full finite strain analyses are carried out for plane strain under small scale yielding conditions, with purely symmetric mode I loading remote from the crack-tip. In cases where the principal axes of the anisotropy are inclined to the plane of the crack it is found that the plastic zones as well as the stress and strain fields just around the blunted tip of the crack become non-symmetric. In these cases the peak strain on the blunted tip occurs off the center line of the crack, thus indicating that the crack may want to grow in a different direction. When the anisotropic axes are parallel to the crack symmetry is retained, but the plastic zones and the near-tip fields still differ from those predicted by standard isotropic plasticity.  相似文献   

6.
Complete stress and electric fields near the tip of a conducting crack between two dissimilar anisotropic piezoelectric media, are obtained in terms of two generalized bimaterial matrices proposed in this paper. It is shown that the general interfacial crack-tip field consists of two pairs of oscillatory singularities. New definitions of real-valued stress and electric field intensity factors are proposed. Exact solutions of the stress and electric fields for basic interface crack problems are obtained. An alternate form of the J integral is derived, and the mutual integral associated with the J integral is proposed. Closed form solutions of the stress and electric field intensity factors due to electromechanical loading and the singularities for a semi-infinite crack as well as for a finite crack at the interface between two dissimilar piezoelectric media, are also obtained by using the mutual integral.  相似文献   

7.
The problem of a plane strain crack lying along an interface between a rigid substrate and an elastic-plastic material has been studied. The elastic-plastic material exhibits pressure-sensitive yielding and plastic volumetric deformation. Two-term expansions of the asymptotic solutions for both closed frictionless and open crack-tip models have been obtained. The Mises effective stress in the interfacial crack-tip fields is a decreasing function of the pressure-sensitivity in both open and closed-crack tip models. The variable-separable solution exists for most pressure-sensitive materials and the limit values for existence of the variable-separable solution vary with the strain-hardening exponents. The governing equations become singular as the pressure-sensitivity limit is approached. Strength of the leading stress singularity is equal 1/(n+1) for both crack-tip models, regardless of the pressure-sensitivity. The second-order fields have been solved as an additional eigenvalue problem and the elasticity terms do not enter the second-order solutions as n2. The second exponents for the closed crack model are negative for the weak strain hardening, whereas the negative second-order eigenvalue in the open crack model slightly grows with the pressure-sensitivity. The second-order solutions are of significance in characterising the crack-tip fields. The leading-order solution contains the dominant mode I components for both open and closed crack-tip models when the materials do not have substantial strain hardening. The second-order solutions are generally mode-mixed and depend significantly on the pressure-sensitivity.  相似文献   

8.
P.-F. Luo  C.-H. Wang 《Strain》2008,44(3):223-230
Abstract:  Stereo vision was used to measure the crack-tip parameters, such as J integral, plastic mixity and elastic mixity of mixed-mode fracture specimens, and to study the applicability of the Shih's plane strain solution to the mixed-mode crack-tip fields. The fracture specimen used in this study was a compact tension shear (CTS) specimen made of 2024-O aluminum. The in-plane strain and stress fields near the mixed-mode crack tip of the CTS specimen were determined using the deformation field measured by the stereo vision. It is observed that the J integral values computed along rectangular contours surrounding the mixed-mode crack-tip approach constant values after r / h  > 0.5. The in-plane strains determined experimentally at several points near the crack tip and at several radial lines emerging from the crack tip are compared with the values calculated using Shih's plane-strain solution and the HRR slope, named after the investigations of Hutchinson, Rice and Rosengren respectively. It is found that the measured values follow the trends of the Shih's plane-strain solution. The elastic mixity evaluated using the measured crack-tip stress fields is close to that obtained from analytical solution. However, the evaluated plastic mixity deviates from the analytical solution.  相似文献   

9.
Asymptotic crack-tip fields including the effect of transverse shear deformation in an anisotropic shell are presented. The material anisotropy is defined here as a monoclinic material with a plane symmetry at x 3=0. In general, the shell geometry near the local crack tip region can be considered as a shallow shell. Based on Reissner shallow shell theory, an asymptotic analysis is conducted in this local area. It can be verified that, up to the second order of the crack tip fields in anisotropic shells, the governing equations for bending, transverse shear and membrane deformation are mutually uncoupled. The forms of the solution for the first two terms are identical to those given by respectively the plane stress deformation and the antiplane deformation of anisotropic elasticity. Thus Stroh formalism can be used to characterize the crack tip fields in shells up to the second term and the energy release rate can be expressed in a very compact form in terms of stress intensity factors and Barnett–Lothe tensor L. The first two order terms of the crack-tip stress and displacement fields are derived. Several methods are proposed to determine the stress intensity factors and `T-stresses'. Three numerical examples of two circular cylindrical panels and a circular cylinder under symmetrical loading have demonstrated the validity of the approach.  相似文献   

10.
In this paper we consider the problem of a functionally graded coating bonded to a homogeneous substrate with a partially insulated interface crack between the two materials subject to both thermal and mechanical loading. The problem is solved under the assumption of plane strain and generalized plane stress conditions. The heat conduction and the plane elasticity equations are converted analytically into singular integral equations which are solved numerically to yield the temperature and the displacement fields in the medium as well as the crack tip stress intensity factors. A crack-closure algorithm recently developed by the authors is applied to handle the problem of having negative mode I stress intensity factors. The Finite Element Method was additionally used to model the crack problem and to compute the crack-tip stress intensity factors. The main objective of the paper is to study the effect of the material nonhomogeneity parameters, partial insulation of the crack surfaces and crack-closure on the crack tip stress intensity factors for the purpose of gaining better understanding of the thermo-mechanical behavior of graded coatings.  相似文献   

11.
The stress field around the tip of an elliptically blunted crack induced by an edge dislocation has been obtained in closed form, from which the mode I and mode II stress intensity factors induced by the edge dislocation are obtained. The solutions apply to the edge dislocation either emitted from crack-tip surface or originated elsewhere, and for the dislocation located anywhere around the crack tip. The effects of the crack length, the crack-tip bluntness, the origination and position of the dislocation on the stress intensity factors are examined.  相似文献   

12.
Sunil Bhat  S. Narayanan 《Acta Mechanica》2011,216(1-4):259-279
The stress field around the crack tip near an elastically matched but strength-mismatched interface body in a bimetallic system is influenced when the crack tip yield or cohesive zone spreads to the interface body. The concept of crack tip stress intensity parameter, K tip, is therefore employed in fracture analysis of the bimetallic body. A computational model to determine K tip is reviewed in this paper. The model, based upon i) Westergaard??s complex potentials coupled with Kolosov?CMuskhelishvili??s relations between a crack tip stress field and complex potentials and ii) Dugdale??s representation of the cohesive zone clearly indicates shielding or amplifying effects of strength mismatch across the interface, depending upon the direction of the strength gradient, over the crack tip. The model is successfully validated by conducting series of high cycle fatigue tests over Mode I cracks advancing towards various strength-mismatched interfaces in bimetallic compact tension specimens prepared by electron beam welding of elastically identical weak ASTM 4340 alloy and strong MDN 250 maraging steels.  相似文献   

13.
Non-singular plastic stress and velocity fields, for the tip of a crack of finite thickness and root radius, are developed as an elastic-plastic crack model that is likely to be more physically realistic than the classical infinitesimal crack with a plastic crack-tip singularity. With a non-singular plastic zone the velocity-field equations are not uniquely determined by the boundary conditions, under large geometrical changes, and they must therefore have the form of a wide set of kinematically-admissible velocity fields. These virtual velocity fields are used to establish the critical work-hardening rate to give a sufficient condition for uniqueness of the crack-tip velocity field in elastic-plastic fracture; it is shown that proof of uniqueness of the velocity field is likely to be an essential requirement for the valid application of elastic-plastic fracture mechanics.The elastic infinitesimal-crack model is shown to give an inadequate representation of the circumferential T-stress distribution at the surface of a crack of finite root radius, and this requires the adoption of a finite-thickness elliptical crack model to give approximate consistency between the elastic stress field and the non-singular plastic stress field at the crack tip.  相似文献   

14.
Quasi-statically growing crack-tip fields in elastic perfectly plastic pressure-sensitive materials under plane strain conditions are investigated in this paper. The materials are assumed to follow the Drucker-Prager yield criterion and the normality flow rule. The asymptotic mode I crack-tip fields are assumed to follow the five-sector assembly of Drugan et al. (1982) for Mises materials. The crack-tip sectors, in turns, from the front of the crack tip are a constant stress sector, a centered fan sector, a non-singular plastic sector, an elastic sector and finally a trailing non-singular plastic sector bordering the crack face. The results of the asymptotic analysis show that as the pressure sensitivity increases, the plastic deformation shifts to the front of the tip, the angular span of the elastic unloading sector increases, and the angular span of the trailing non-singular plastic sector bordering the crack surface decreases. As the pressure sensitivity increases to about 0.6, the angular span of the trailing non-singular plastic sector almost vanishes. The effects of the border conditions between the centered fan sector and the first non-singular plastic sector on the solutions of the crack-tip fields for both Mises and pressure-sensitive materials are investigated in details. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Plane stress dynamic crack growth along a ductile/rigid interface is investigated. The ductile material is taken to be ideally plastic and obey the J2 flow theory of plasticity. Under steady-state conditions, the asymptotic structure of the crack-tip stress, velocity and strain fields has been obtained. The study reveals that two types of crack-tip sectors exist, namely uniform and nonuniform plastic sectors and that the stress, strain and velocity fields are bounded (nonsingular) in all sectors. In a uniform sector, the rectangular Cartesian components of the stress, strain and velocity fields are constant, and there is no plastic strain accumulation. In a nonuniform sector, the stress, strain and velocity components at a point depend on the angular position of the point in the crack-tip polar coordinate system and are governed by a system of simultaneous ordinary differential equations. This is a sector plastic strains can accumulate. A general crack-tip sector assembly is obtained for a practical range of crack growth speeds. Several nontrivial families of admissible solutions of the crack-tip fields based on this general assembly of uniform and nonuniform crack-tip sectors are presented and discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The asymptotic structures of crack-tip stress and deformation fields are investigated numerically for quasi-static and dynamic crack growth in isotropic linear hardening elastic-plastic solids under mode I, plane stress, and small-scale yielding conditions. An Eulerian type finite element scheme is employed. The materials are assumed to obey the von Mises yield criterion and the associated flow rule. The ratio of the crack-tip plastic zone size to that of the element nearest to the crack tip is of the order of 1.6 × 104. The results of this study strongly suggest the existence of crack-tip stress and strain singularities of the type r s (s < 0) at r=0, where r is the distance to the crack tip, which confirms the asymptotic solutions of variable-separable type by Amazigo and Hutchinson [1] and Ponte Castañeda [2] for quasi-static crack growth, and by Achenbach, Kanninen and Popelar [3] for dynamic crack propagation. Both the values of the parameter s and the angular stress and velocity field variations from the present full-field finite element analysis agree very well with those from the analytical solutions. It is found that the dominance zone of the r s-singularity is quite large compared to the size of the crack-tip active plastic zone. The effects of hardening and inertia on the crack-tip fields as well as on the shape and size of the crack-tip active plastic zone are also studied in detail. It is discovered that as the level of hardening decreases and the crack propagation speed increases, a secondary yield zone emerges along the crack flank, and kinks in stress and velocity angular variations begin to develop. This dynamic phenomenon observable only for rapid crack growth and for low hardening materials may explain the numerical difficulties, in obtaining solutions for such cases, encountered by Achenbach et al. who, in their asymptotic analysis, neglected the existence of reverse yielding zones along the crack surfaces.  相似文献   

17.
Abstract

The main features of the stress-corrosion failure of glass-reinforced plastic tanks and vessels are described. Model experiments using a modified double cantilever beam test have been made on aligned composite materials tested in 0·6M HCI. The rate of crack growth normal to the fibre direction depends on stress intensity. The crack-tip fracture processes for cracks growing in the velocity range 10?9 to 2 × 10?8 m S?l have been determined using fractographic techniques. The stresses in the fibres before fracture at the crack tip have been estimated from the size of the mirror zones. A major feature of stress corrosion is the planar nature of the crack surface and, at low stress intensities, fracture occurs without interface cracking or debonding. An estimate of the strain energy release rate has been made from an analysis of the stress fields at the crack tip and the mechanisms of crack growth. The results are in reasonably good agreement with experimentally determined values.

MST/64  相似文献   

18.
Mixed-mode dynamic crack growth behavior in functionally graded materials (FGMs) under thermo-mechanical loading is studied. Asymptotic analysis in conjunction with displacement potentials has been used to develop thermo-mechanical stress fields for a mixed mode propagating crack in a FGM. The shear modulus, mass density, thermal conductivity and coefficient of thermal expansion of the FGM are assumed to vary exponentially along the gradation direction. First, asymptotic temperature fields are derived for an exponential variation of thermal conductivity and later these temperature fields are used in deriving stress fields. Using asymptotic thermo-mechanical stress fields the variation of maximum shear stress, circumferential stress and strain-energy density as a function of temperature around the crack tip are generated. Finally, utilizing the minimum strain-energy density criterion and the maximum circumferential stress criterion, the crack growth direction for various crack-tip speeds, non-homogeneity coefficients and temperature fields are determined.  相似文献   

19.
Fracture mechanics of piezoelectric materials   总被引:3,自引:0,他引:3  
This paper presents an analysis of crack problems in homogeneous piezoelectrics or on the interfaces between two dissimilar piezoelectric materials based on the continuity of normal electric displacement and electric potential across the crack faces. The explicit analytic solutions are obtained for a single crack in an infinite piezoelectric or on the interface of piezoelectric bimaterials. For homogeneous materials it is found that the normal electric displacement D2, induced by the crack, is constant along the crack faces which depends only on the remote applied stress fields. Within the crack slit, the perturbed electric fields induced by the crack are also constant and not affected by the applied electric displacement fields. For bimaterials, generally speaking, an interface crack exhibits oscillatory behavior and the normal electric displacement D2 is a complex function along the crack faces. However, for bimaterials, having certain symmetry, in which an interface crack displays no oscillatory behavior, it is observed that the normal electric displacement D2 is also constant along the crack faces and the electric field E2 has the singularity ahead of the crack tip and has a jump across the interface. Energy release rates are established for homogeneous materials and bimaterials having certain symmetry. Both the crack front parallel to the poling axis and perpendicular to the poling axis are discussed. It is revealed that the energy release rates are always positive for stable materials and the applied electric displacements have no contribution to the energy release rates. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Plane elasticity problems of a general anisotropic material subjected to both in-plane and anti-plane loadings are formulated based on Lekhnitskii’s complex variable approach. Some useful solutions to half-plane problems and elliptical cavity problems are derived for cases involving anti-plane loadings. Asymptotical crack-tip elastic fields are reviewed and comparisons are made for crack problems and slender elliptical cavity problems. Specifically, it is shown that the stress state at a rounded crack tip can be characterized by a stress rounding factor and the stress intensity factor of the associated slit crack. An important conclusion is that, for a fixed loading condition and a fixed shape of the cavity, the influence of the shape of the cavity on the stress concentration factor can be separated from the influence of the material properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号