共查询到18条相似文献,搜索用时 62 毫秒
1.
采用自制工作波长1 064 nm的Nd:YAG激光器,作为ICP-AES的固体进样系统。根据Fe元素强度及其他元素相对强度的稳定性,对分析条件进行了优化。优化的分析条件为:激光频率10 Hz,激光电压760 V,氩气流量0.7 L/min,RF功率1 350 W,离焦量10 mm。在优化的分析条件下,分析了中低合金钢中的Cr,Cu,Mn,Mo,Ni,Si,V,Ti等8个元素,除Si元素外,其它元素线性相关系数均大于0.999 0。元素检测限除Ni元素为79μg/g外,其它元素均低于50μg/g。试验结果表 相似文献
2.
采用盐酸和硝酸溶解样品,选择220.351 nm波长作为分析线,电感耦合等离子体原子发射光谱法(ICP-AES)测定中低合金钢中微量铅。通过选择干扰小、灵敏度高的分析线,使用与分析样品基体相接近的标准样品作工作曲线和控制一致的分析条件,克服了物理干扰和基体效应的影响。本法的检出限为50μg/L。对铅质量分数为0.087%的低合金钢样品测定12次,得到相对标准偏差为0.57%,加标回收率为97.4%。方法可用于中低合金钢中微量铅的测定。 相似文献
3.
中低合金钢中的铌、钨、锆、钴、钒可以改善钢的性能,提高钢的强度、耐腐蚀性、焊接性能等,而锡则是钢中的有害元素,因此对钢中这些元素的测定十分必要。本文利用微波消解法消解中低合金钢样品,由于溶样的温度和压力提高,样品在硫酸和氢氟酸介质中能够快速和完全地溶解。试样溶解后加入草酸络合铌,硼酸络合过量的氢氟酸,并在配制校准曲线系列溶液时加入与被测试液相同量铁、溶解酸,使校准曲线系列溶液和被测试液中的基体、酸度基本一致以消除基体带来的干扰,然后用电感耦合等离子体原子发射光谱法 (ICP-AES)测定了试液中铌、钨、锆、钴、钒、锡含量。用本法测定了中低合金钢标样中铌钨锆钴钒锡,测定值与认定值吻合,测定结果的相对标准偏差在0.03%~1.2%。 相似文献
4.
试述了电感耦合等离子体原子发射光谱法测定润滑油中杂质元素的样品前处理方法———无机处理法和有机进样法;对影响测定结果的相关因素,如仪器工作条件、干扰及校正、处理样品的酸及其浓度、有机进样等进行了讨论。 相似文献
5.
6.
为了满足钢的研发以及生产要求,建立了利用电感耦合等离子体原子发射光谱(ICP-AES)法测定高合金钢中钒的方法。考察了钒常用的谱线与高合金钢中常见合金元素谱线的重叠干扰情况,选择了V292.402 nm和V309.311 nm谱线作分析线,并通过基体匹配、空白扣除、干扰系数校正和不扣除背景等方式进行干扰校正。用本法对含钒质量分数为0.005 %~4 %的高合金钢标准物质进行测定,测定值与认定值吻合,测定结果的相对标准偏差小于5 %(n=7)。 相似文献
7.
在新钢种中添加金属锰时,需要知道金属锰中钛的含量,因此提出了采用电感耦合等离子体原子发射光谱法测定金属锰中痕量钛的分析方法。实验以硝酸分解样品,选择334.941nm谱线作为钛的分析线,使用与分析样品基体相接近的标准溶液和相同的测定条件克服物理干扰影响。结果表明,钛在质量分数为0.0008%~0.018%范围内与其强度呈线性关系,方法检出限为0.003μg/mL,方法用于金属锰样品中钛的测定,测定值与分光光度法及原子吸收光谱法的测定值一致,测定结果的相对标准偏差(n=6)在1.9%~3.3%之间。 相似文献
8.
9.
结合本人的教学和科研实践,讨论了对电感耦合等离子体发射光谱法(ICP-OES)中几个问题的认识。它们包括:(1)关于电感耦合等离子体原子发射光谱法称谓的个人看法;(2)对电感耦合等离子体发射光谱法中干扰效应的认识;(3)如何判断干扰效应的存在;(4)对检出限、测定限和线性范围的认识。本文的目的在于:澄清在ICP-OES应用研究及其论文撰写中出现的问题。 相似文献
10.
在探讨内标法和基体归一法校准的基本原理基础上,建立了193 nm ArF准分子激光剥蚀电感耦合等离子体质谱无内标定量分析钢铁标样的方法。结果表明,采用Fe作内标和基体归一法(无内标)两种校正方法获得的中低合金钢GBW01398、含氮铸铁GBW01138和不锈钢GBW01659分析结果相对误差在5%以内。与传统的内标法相比,采用基体归一校准法的最大优点是无需预先知道样品中某一内标元素的含量即可进行定量。这一特点使得该技术也可适用于难以找到均匀分布的内标元素的样品的空间分布测定。剥蚀坑电镜扫描图像显示的波浪形底以及剥蚀坑周围显著拓展的外缘表明样品在剥蚀过程中,由于"热效应"发生了较严重的部分熔融。计算的分馏因子表明钢铁标样中元素V、Cr、Fe、Co、Ni和Cu的分馏因子与所用的外标参考物质NIST 610相似,接近于1且标准偏差较小。其它大部分微量元素由于含量低和分布不均一造成计算得到的元素分馏因子标准偏差特别大。钢铁标样中Cr、Fe、Co、Ni测定值与认定值的相对偏差都在10%以内。本文还发现Mg和轻稀土以及Bi和Pb在钢铁标样GBW01138中的分布具有很好的相关性。 相似文献
11.
12.
13.
考察了射频辉光放电发射光谱法中功率(5~18W)和放电气压(5~15Torr)对元素谱线发射强度及相对强度稳定性的影响,并分析了引起影响的原因。结果表明,功率越高,发射强度越大;放电气压对各元素谱线发射强度的影响各异。在气压6~12Torr范围内,除5W外功率变化对大多数元素相对强度稳定性影响较小,相对标准偏差介于0.5%~2%。当功率在12W时,在10Torr气压下测定中低合金钢标准样品中C,Si,Mn,P,S,Cr,Ni,W,Ti,Cu,Co,B,Al,V,Mo,Nb16种元素,测定值与认定值一致;相 相似文献
14.
了解合金元素在熔合线附近的分布情况及存在形式有助于确定焊材对熔合区淬硬倾向等性能的影响。通过优化仪器的工作参数建立了用激光烧蚀-电感耦合等离子体质谱法(LA-ICP-MS)测定低合金钢中Al、Ti、V、Ni等元素含量的方法,并将所建立的方法应用于焊缝及其附近母材的Al、Ti、V、Ni等元素含量的变化趋势研究。研究结果表明,这些合金元素的含量在熔合线附近存在着明显的过渡区间(95~360μm),且其含量在焊缝金属与母材中差别越大,焊缝中的过渡区间就越宽。 相似文献
15.
采取9种不同梯度锆量中低合金钢标准样品绘制曲线,建立了测定中低合金钢中锆的直流辉光放电原子发射光谱法。以单因素法考察了直流辉光光谱仪实验参数对测定中低合金钢中锆的影响,确定激发电压为1250V、激发电流为45mA、预燃时间为60s、积分时间为10s。以锆元素光谱强度为横坐标,锆元素质量分数为纵坐标绘制校准曲线,其校准曲线线性相关系数为0.9961,线性范围为0.0044%~0.35%。采用实验方法对中低合金钢标准样品中锆进行测定,测定值与认定值基本一致,相对标准偏差(RSD,n=11)为0.72%~1.7%,测定结果的相对标准偏差都符合仪器推荐测量要求(相对标准偏差小于3%)。将实验方法应用于中低合金钢实际样品分析,测得结果与国标方法GB/T 223.30—1994基本一致。 相似文献
16.
激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)微区分布分析技术对于管线钢的氢致开裂机理研究具有重要意义。实验系统优化了激光剥蚀载气流量、剥蚀孔径、剥蚀速率及ICP-MS载气流量、元素积分停留时间等工作参数。通过线扫描方式剥蚀GSBH40068-X-93系列标准样品,以~(57)Fe为内标,绘制了校准曲线。建立了基于管线钢中Al、Mn、Ni、Cu、Mo等元素的LA-ICP-MS定量分析方法,并利用实验方法对X80管线钢裂缝区域进行了成分分布分析。LA-ICP-MS定量分析结果与电感耦合等离子体原子发射光谱法(ICP-AES)测定结果相吻合,裂缝区域各元素二维分布结果与电子探针X射线显微分析(EPMA)线扫描结果相一致,证实了LA-ICP-MS方法应用于管线钢样品分布分析的准确性和有效性。各元素二维分布图直观反映了不同位置处的偏析状态,进一步揭示了样品裂缝的形成可能与Al_2O_3、MnS夹杂物、富碳相的存在及元素Mo偏析有关。实验方法有望为氢致开裂机理研究及新材料研发提供一种有效的分析及质量控制手段。 相似文献
17.
研究用辉光放电质谱法(GDMS)同时直接测定中低合金钢中的B,C,Al,P,S,Ti,V,Cr,Mn,Co,Ni,Cu,As,Zr,Nb,Mo,Sn,W共18种元素。对仪器进行质量校正,以确定正确的质谱峰位置。通过对分析元素质谱干扰情况的考察,选择合适的同位素用于分析。根据分析元素相对强度和相对强度的稳定性,对辉光放电参数如电流、电压、预溅射时间进行了优化。采用相对灵敏度因子(RSF)进行质谱定量分析。方法用于测定中低合金钢标准样品,分析结果与标样的认定值相吻合,大部分元素的相对标准偏差(RSD)小于5% 相似文献
18.
用火花源原子发射光谱仪对中低合金钢中酸溶铝进行分析。讨论了不同制样方法(铣床、平磨机)及氩气状态对测定结果的影响,得出铣床制样为最佳选择,而平磨机制样时砂纸会带来同类元素的干扰,提出用铝质砂纸磨样后要用重叠点激发方式分析酸溶铝。修正了仪器自带分析程序中的响应曲线,采用经调整后的分析程序及其重叠点激发方式分析酸溶铝。方法用于低合金钢标准样品的分析,相对标准偏差为1.2%和2.9%;对于实际样品的分析,测定值与湿法结果一致。从分析的精度、本法与湿法分析对比后的结果看,完全能满足国标GB/T4336的要求(残余的氮化铝可忽略不计)。 相似文献