首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用X射线光电子能谱仪(XPS)分析了不同纳米Ti O2含量的Ni–P化学镀液所制备的Ni–P–TiO 2复合镀层中纳米TiO 2的含量及其分布状况,在以乳酸为配位剂、聚乙烯吡咯烷酮(PVP)为表面活性剂的Ni–P–Ti O2化学复合镀液中,采用红外–可见–紫外分光光度法研究了不同用量的乳酸和PVP以及镀液p H对纳米Ti O2分散性的影响,获得了最佳的分散条件:纳米Ti O2加入量3.0~4.0 g/L,PVP 0.2 g/L,乳酸4.5 m L/L,p H 5.0~5.5。  相似文献   

2.
利用PCB碱性蚀刻废液制备高纯度纳米铜粉   总被引:1,自引:0,他引:1  
采用液相化学还原法从碱性蚀刻废液中制备高纯度的纳米铜粉,以回收碱性蚀刻废液中的铜。研究了还原剂种类和用量、反应温度和反应时间对纳米铜粉形貌、粒度和分散性的影响。结果表明,制备纳米铜粉的最佳还原剂为水合肼,最优工艺条件为:PVP(聚乙烯吡咯烷酮)0.003g/L,CTAB(十六烷基三甲基溴化铵)0.002g/L,n(N2H4.H2O):n{[Cu(NH3)4]2+}=1:3,反应温度70°C,反应时间30min。采用最优工艺可制得球状、粒径在100nm范围内、纯度高、抗氧化性好的纳米铜,对碱性蚀刻废液中铜的回收率在98%以上。  相似文献   

3.
以涤纶织物为基材,对其化学镀铜后再化学镀镍–磷合金镀层。探讨了化学镀Ni–P合金工艺各因素对镀金属织物导电性和增重率的影响,通过正交试验优化了化学镀Ni–P合金工艺,并对镀Cu/Ni–P合金织物的结合牢度、耐蚀性和电磁屏蔽效能进行了表征。结果表明,涤纶基铜层表面化学镀Ni–P合金镀层的最优配方和工艺为:NiS O4·6H2O 26 g/L,Na H2PO2·H2O 24 g/L,Na3C6H5O730 g/L,Na2B4O7·10H2O 6 g/L,温度80°C,p H 11,时间25 min。最优工艺下制备的镀铜/镍–磷织物的结合强度高,耐腐蚀性和电磁屏蔽性能良好。  相似文献   

4.
周玉新  董杰  郭嘉 《云南化工》2014,(2):1-3,16
在浸没循环撞击流反应器(SCISR)中,采用五水硫酸铜为原料,以硼氢化钾为还原剂制备纳米铜粉。确定了制备纳米铜粉的适宜工艺条件是:Cu2+的浓度为0.2 mol/L,硼氢化钾与硫酸铜物质的量比为1∶1,氢氧化钾与硼氢化钾物质的量比为9∶1,反应温度为40℃,反应时间为10 min,2%(质量分数)聚乙烯吡咯烷酮用量为80 mL。采用TEM和XRD对产品进行表征。所得产品呈近似球形,直径2030 nm;纯度高,其收率高于98%。  相似文献   

5.
采用化学共还原法制备聚乙烯吡咯烷酮(PVP)稳定的Pt/Co和Pt/Ni双金属纳米溶胶,采用UV-Vis、TEM等对所合成的Pt/Co和Pt/Ni双金属纳米溶胶进行表征,研究了化学组成对双金属纳米溶胶催化剂催化NaBH4水解制氢的影响. 结果表明,所制双金属纳米溶胶的平均粒径约为2.0 nm,双金属纳米溶胶的催化能力高于单金属Pt, Co, Ni纳米溶胶,Pt/Co和Pt/Ni双金属纳米颗粒优异的催化性能可归因于电荷转移效应,Co或者Ni原子与Pt原子之间发生的电荷转移效应使得Pt原子带负电而Co或者Ni原子带正电,荷电的Pt和Co、Ni原子成为催化反应的活性中心,促进了催化反应的进行.  相似文献   

6.
通过化学还原法制备了Ni B合金催化剂,并将其用于催化甲酸及其盐还原硝基苯制备苯胺。用X-射线粉末衍射仪(XRD)对Ni B进行了表征,结果表明Ni B为非晶态合金。考察了Ni B催化甲酸、甲酸钠、甲酸铵和甲酸肼还原硝基苯的效果,结果表明甲酸肼的还原效果最好。以Ni B催化甲酸肼还原10种芳香族硝基化合物得到相应的芳胺,收率为35%~66%。  相似文献   

7.
采用化学镀法在钢铁件表面制备了黑色镍-铜-磷合金层.研究了发黑剂对化学镀层表面颜色的影响,及影响化学镀层性能的各个因素.最佳工艺为:28g/L硫酸镍,30g/L次磷酸钠,15g/L柠檬酸钠,1g/L硫酸铜,8g/L硫氰酸钾,15g/L醋酸钠,2mg/L硫脲,pH为7.0,θ为80℃,得到耐磨耐蚀、结合力较好的黑色Ni-...  相似文献   

8.
在化学镀液基本成分不变的情况下,考察了硫脲的质量浓度、乳酸的质量浓度、温度、pH值对沉积速率和化学镀Ni-W-P合金镀层中W的质量分数的影响。确定了最佳的工艺条件为:硫脲5×10~(-5) g/L,乳酸16 g/L,温度90℃,pH值8.8。最佳工艺条件下所得化学镀Ni-W-P合金镀层中Ni、W、P三种元素的质量分数分别为86.38%、4.08%、9.54%。最佳工艺条件下所得化学镀Ni-W-P合金镀层能提高钢铁基体的显微硬度及其在中性盐溶液中的耐蚀性。  相似文献   

9.
以铁片为基材进行化学镀Ni–B合金。研究了镀液中主盐、还原剂和配位剂用量及稳定剂种类对镀速、镀液稳定性,以及Ni–B合金镀层外观和显微硬度的影响,得到的较佳配方为:SF-815镍盐A 60 mL/L,SF-815配位剂B 200 mL/L,SF-815还原剂C 20 mL/L,含巯基化合物(用作稳定剂)5 mg/L。采用该体系镀液在pH 6.2~7.2、温度60~70℃的条件下化学镀1 h所得Ni–B合金镀层均匀,呈半光亮,结晶细致,B质量分数为1.62%~3.23%,显微硬度为683.0~753.1 HV。该体系镀液性能稳定,连续工作10个周期后镀液保持澄清,镀层外观和各项性能保持合格。  相似文献   

10.
原子荧光光谱法测定地下水中锡   总被引:1,自引:0,他引:1  
原子荧光光谱法测定地下水锡试验中,选择最佳的硼氢化钾溶液和硫脲-抗坏血酸溶液浓度,反应体系中加入浓度为20 g/L硼氢化钾溶液,100 mL试样溶液中加入10 mL硫脲-抗坏血酸溶液作为还原剂,方法检出限为0.02μg/L,测量精密度为0.33%~1.24%,加标回收效率为100%~102%。  相似文献   

11.
为了提高Ni–P合金镀层的耐蚀性和表观质量,在化学镀Ni–P二元合金镀液的基础上加入钨酸钠,在钢铁上制备了Ni–W–P三元合金镀层。探讨了镀液主要成分和工艺条件对镀层外观质量及耐蚀性的影响,获得了较佳的工艺规范:硫酸镍25~35 g/L,钨酸钠55~65 g/L,次磷酸钠30~40 g/L,复合配位剂80~100 g/L,组合光亮剂5~10 mg/L,p H 8.5~9.0,温度80~90°C。检测了镀层的相关性能。结果表明,所制备的Ni–W–P合金镀层结晶细致,光亮度和结合力好,具有良好的装饰效果,耐蚀性优于化学镀Ni–P合金镀层。  相似文献   

12.
Ni-Sn-P合金化学镀的工艺参数研究   总被引:1,自引:0,他引:1  
普通碳钢进行Ni-Sn-P合金化学镀,分别考察了施镀温度、主盐与还原剂浓度比(Ni/P)、主盐浓度、pH值等工艺参数对镀层厚度、硬度、孔隙率、耐腐蚀性的影响,得出最佳镀液配方和工艺:主盐硫酸镍25g/L,SnCl48.34g/L,还原剂次亚磷酸钠37.5g/L,选用复合配体酒石酸钾钠7.5g/L,柠檬酸三钠17.5g/L,乳酸32.5g/L,加速剂丁二酸16g/L。镀液温度为85℃,pH为4.6。  相似文献   

13.
王华  王莹 《广东化工》2010,37(1):32-33
以聚乙烯吡咯烷酮(PVP)为保护剂,利用化学还原法在无水乙醇中合成了CdS/Au复合纳米粒子,通过紫外可见(UV-vis)吸收光谱、透射电子显微镜(TEM)以及荧光光谱法对其进行表征。研究结果表明,将以PVP为保护剂制备的CdS/Au复合纳米粒子在80℃下回流3 h后,CdS/Au复合纳米粒子大小分布均匀。  相似文献   

14.
采用液相还原法,以KBH4为还原剂、PVP为分散剂,在纯水溶液中制备出纳米Co-B,Co-Fe-B和Co-Cu-B合金粉体材料,运用XRD,TEM,SEM,EDS,VSM等分析方法进行物相、结构形貌、成分和磁学性能的表征,研究Fe,Cu对纳米Co-B合金粉体材料的性能影响。结果表明,在适当的还原剂浓度和金属盐溶液浓度条件下,采用液相还原法可以制备出非晶态的纳米Co-B,Co-Fe-B合金粉末和具有特殊结构的非晶-纳米晶相Co-Cu-B固溶体,并发现Co-B纳米粉末团聚倾向较重,颗粒易长大;Co-Cu-B合金的纳米粉末的团聚倾向减弱,颗粒尺寸明显细化;Co-Fe-B合金纳米粉末的分散性显著提高,颗粒粒度的均匀性最好,尺寸也最细小,约为10 nm。磁学性能也以Co-Fe-B系合金更为优良。纳米粉末产物的磁学性能是由颗粒原子本身的磁性和表面效应共同作用的结果。  相似文献   

15.
镍硼及镍钼硼合金镀层的组织和性能研究   总被引:2,自引:1,他引:1  
通过化学镀方法制备高硬度Ni B及Ni Mo B合金镀层。经XRD分析确认Ni B合金镀态镀层组织以非晶态为主 ,并混有含硼过饱和镍的固溶体。热处理后 ,Ni B和Ni Mo B两合金镀层的硬度分别高达Hv12 0 0和 140 0以上。Ni Mo B镀层组织及性能随Na2 MoO4 ·2H2 O浓度而变化 ;当浓度为 0 .6 0 4 g L时 ,具有最高的硬度  相似文献   

16.
胡存杰  蒋燕胜 《化学世界》2007,48(7):388-389,394
以六水三氯化铁和硼氢化钾为原料,采用液相还原法制备纳米铁粉末。对反应体系中表面活性剂、反应物配比和反应时间等制备条件进行试验;同时对纳米铁降解水中氯代十六烷基吡啶(CPC)的影响因素进行探讨。实验结果表明:制备条件以乙醇-水混合体系下配比1∶1,10%PEG-2000,反应时间30 min为最佳;在pH=6、紫外光照时间为60 min,纳米铁粉末光催化降解氯代十六烷基吡啶的最佳用量为0.050 g/50 mL氯代十六烷基吡啶(50 mg/L);其对氯代十六烷基吡啶溶液的降解率达94.52%。结果令人满意。  相似文献   

17.
以不锈钢为基体,采用化学镀方法制备Ni-P合金,然后在镀液中添加TiO_2纳米粒子制备出低磷化学复合镀Ni-P合金,以镀层硬度、孔隙率、磷含量、沉积速率等为评价指标,研究了TiO_2纳米粒子对低磷化学复合镀Ni-P合金的影响。结果表明,镀液中添加纳米TiO_2后,镀层硬度增大、孔隙率降低、磷含量增加。TiO_2纳米粒子的最优添加量是0.50 g/L。  相似文献   

18.
采用碱式化学镀方法在Q235钢表面制备了Ni-Zn-P合金镀层和Ni-Zn-P/纳米SiO_2复合镀层。研究了硫酸锌、硫酸铵及柠檬酸钠的质量浓度对Ni-Zn-P合金镀层组织的影响,并研究了纳米SiO_2微粒的质量浓度对Ni-Zn-P/纳米SiO_2复合镀层性能的影响。通过单因素试验确定的化学镀Ni-Zn-P合金镀层的最优工艺条件为:硫酸锌0.5g/L,硫酸铵40g/L,柠檬酸钠50g/L,硫酸镍27g/L,次磷酸钠16g/L,pH值9.0,温度85℃。当纳米SiO_2微粒的质量浓度为1.0g/L时,NiZn-P/纳米SiO_2复合镀层表面光滑平整,组织均匀致密。随着纳米SiO_2微粒的质量浓度的增加,Ni-Zn-P/纳米SiO_2复合镀层的硬度逐渐提高。Ni-Zn-P/纳米SiO_2复合镀层比Ni-Zn-P合金镀层更耐Cl-和碱性溶液腐蚀,而且在纳米SiO_2微粒的质量浓度为1.0g/L时,Ni-Zn-P/纳米SiO_2复合镀层的腐蚀速率最低。  相似文献   

19.
化学镀方法制备纳米级铜粉及镍-磷粉   总被引:7,自引:1,他引:7  
研究了以化学镀方法制备纳米金属粉末的工艺条件。结果表明,采用次磷酸钠为还原剂的酸性化学镀镍体系和以甲醛为还原剂的化学镀铜体系中,有氯化钯作为反应催化剂,并添加合适的分散剂,则可制得直径为5-10nm的镍-磷非晶态粉末和直径为200-300nm的铜粉末。  相似文献   

20.
以PdCl2为原料,聚乙烯吡咯烷酮(PVP)和葡萄糖分别作分散剂和还原剂,制备得到纳米钯粉。表征了纳米钯粒子的形貌、结构、稳定性、分散性及其对化学镀铜的影响。结果表明,所得纳米钯是粒径为40~60 nm的球形粒子,纯度高,且不易氧化。纳米钯活化液的分散性和稳定性好,将其用于通孔化学镀铜前的活化处理后,镀铜通孔的背光级数在9级以上,铜镀层平整。因此,采用本工艺制备的纳米钯是一种性能优异的沉铜催化剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号