首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The radiation resistance of Au-Pd-Ti-Pd-n ++-InP ohmic contacts and Au-TiB x -n-n +-n ++-InP barrier contacts—both initial and subjected to a rapid thermal annealing and irradiated with 60Co γ-ray photons with doses as high as 109 R—has been studied. Before and after external effects, the electrical characteristics of the barrier and ohmic contacts, distribution profiles for components, and phase composition in the metallization layers have been measured. In ohmic Pd-Ti-Pd-Au contacts subjected to rapid thermal annealing and irradiation, a significant distortion of the layered structure of metallization occurs; this distortion is caused by the thermal and irradiation-stimulated transport of Pd over the grain boundaries in polycrystalline Ti and Au films. However, the specific contact resistance ρ c does not change appreciably, which is related to a comparatively unvaried composition of the contact-forming layer at the Pd-n +-InP interface. In the initial sample and the sample subjected to the rapid thermal annealing at T = 400°C with the Au-TiB x -n-n +-n ++-InP barrier contacts and irradiated with the dose as high as 2 × 108 R, a layered structure of metallization is retained. After irradiation with the dose as high as 109 R, in the samples subjected to a rapid thermal annealing at T = 400°C, the layered structure of metallization becomes completely distorted; however, this structure is retained in the initial sample. The electrical properties of the contact structure appreciably degrade only after irradiation of the sample preliminarily subjected to a rapid thermal annealing at T = 400°C.  相似文献   

2.
Temperature dependences of the contact resistivity ρ c of Au-TiB x -Ge-Au-n-n +-n ++(GaAs)-InP ohmic contacts before and after short-term (10 s) microwave treatment have been studied both experimentally and theoretically. It is shown that ρ c can decrease after microwave treatment in the entire temperature range of ρ c measurements (100–400 K). Good agreement between the theoretical and experimental ρ c (T) curves is attained and interpreted on the assumption that the dislocation density in the semiconductor near-surface region is varied as a result of microwave radiation.  相似文献   

3.
The effective recombination velocity Snn+ at the nn+ interface in buried layer (nn+p) and n epi-n+ substrate structures has been studied using a model which takes into account the retarding outdiffusion region, recombination and bandgap narrowing. The variation of Snn+ with diffusion length and bandgap narrowing has been estimated taking into consideration their doping-dependence. An attempt has been made to explain the wide range in the reported values for Snn+ using the results of this study.Results indicate clearly the difference between the Snn+ of the two structures. This difference arises from the collection by the p-substrate which accounts for a significant part of the Snn+ of the buried layer structure over a wide range of values of diffusion length. This collection component of Snn+ is sensitive to bandgap narrowing.On the other hand, the Snn+ of the nn+ structure is largely determined by the recombination in the outdiffusion region which is sensitive mainly to the value of diffusion length in that region. The component of Snn+ representing recombination in the n+ substrate is sensitive to bandgap narrowing. The present study indicates the dependence of Snn+ on the structure and processing of the devices in which the nn+ interface occurs.  相似文献   

4.
Fluorine-doped indium oxide (IFO) films are deposited onto (pp +)Si and (n + nn +)Si structures made of single-crystal silicon by ultrasonic spray pyrolysis. The effect of the IFO deposition time and annealing time in an argon atmosphere with methanol vapor on the IFO chemical composition, the photovoltage and fill factor of the Illumination-U oc curves of IFO/(pp +)Si structures, and the sheet resistance of IFO/(n + nn +)Si structures, correlating with the IFO/(n +)Si contact resistance, is studied. The obtained features are explained by modification of the properties of the SiO x transition layer at the IFO/Si interface during deposition and annealing. Analysis of the results made it possible to optimize the fabrication conditions of solar cells based on IFO/(pp +)Si heterostructures and to increase their efficiency from 17% to a record 17.8%.  相似文献   

5.
The 320 × 256 focal plane arrays based on р + -B–n-N + tetralayer heterostructures with a wide-gap barrier layer have been investigated. The heterostructures with a narrow-gap n-InGaAs absorbing layer were grown by means of metalorganic vapor phase epitaxy on InP substrates. The band discontinuity between the In0.53Ga0.47As absorbing layer and the In0.52Al0.48As barrier layer is removed by growing a thin four-component n-AlInGaAs layer with the bandgap gradient variation. Delta-doped layers included into the heterostructures make it possible to lower the barrier in the valence band and eliminate the nonmonotonicity of energy levels. The experimental study of the dark current has been performed. It has been revealed that the average value of the dark current does not exceed 10 fA for the photodiode arrays with a pitch of 30 μm.  相似文献   

6.
The electrical properties of a fabricated Au/polymethylmethacrylate (PMMA)/n-InP Schottky barrier diode have been analyzed for different annealing temperatures using current–voltage (IV) and capacitance–voltage (CV) techniques. It is observed that the Au/PMMA/n-InP structure shows excellent rectifying behavior. The extracted barrier height and ideality factor of the as-deposited Au/PMMA/n-InP Schottky contact are 0.68 eV (JV)/0.82 eV (CV) and 1.57, respectively. However, the barrier height (BH) of the Au/PMMA/n-InP Schottky contact increases to 0.78 eV (JV)/0.99 eV (CV) when the contact is annealed at 150°C for 1 min in nitrogen atmosphere. Upon annealing at 200°C, the BH value decreases to 0.72 eV (JV)/0.90 eV (CV) and the ideality factor increases to 1.48. The PMMA layer increases the effective barrier height of the structure by creating a physical barrier between the Au metal and the n-InP. Cheung’s functions are also used to calculate the series resistance of the Au/PMMA/n-InP structure. The interface state density (N ss) is found to be 6.380 × 1012 cm?2 eV?1 and 1.916 × 1012 cm?2 eV?1 for the as-deposited and 150°C-annealed Au/PMMA/n-InP Schottky contacts, respectively. These results indicate that the interface state density and series resistance have a significant effect on the electrical characteristics of Au/PMMA/n-InP Schottky barrier devices. Finally, it is noted that the diode parameters change with increasing annealing temperature.  相似文献   

7.
It is shown that injection currents in structures with blocked hopping conduction (the so-called BIB structures) may be interpreted as Richardson thermionic currents flowing through potential barriers. The latter are governed by the electron chemical potential in the N ++-N + (N ++-I) regions. It is also shown that measurement of the injection potential is a convenient method for determining the degree of compensation in silicon structures with “ohmic” contacts.  相似文献   

8.
《Solid-state electronics》1986,29(9):883-884
The majority carrier thermal emission rates of nickel levels in the depletion region of reverse biased silicon p+ nn+ junctions have been investigated using the admittance spectroscopy technique. We have found two levels associated with nickel in n-type silicon. The “thermal activation energies” have values of EC − 360 ± 10 meV and EC − 570 ± 10 meV.  相似文献   

9.
This paper reports on theoretical modeling of medium-wavelength infrared HgCdTe barrier infrared detector (BIRD) photoelectrical performance. BIRD HgCdTe detectors were simulated with the commercially available software APSYS. Detailed analysis of the detector performance such as dark current, photocurrent, resistance–area product, detectivity versus applied bias, operating temperature, and structural parameters (absorber doping, barrier composition) was performed to determine the optimal operating conditions. It is shown that higher operation temperature conditions achievable with commonly used thermoelectric coolers allow detectivities of D = 9.5 × 1010 cmHz1/2/W and D * = 1.5 × 1011 cmHz1/2/W at T = 200 K to be obtained for the correct absorber doping for nBnnn+ and nBnpn+, respectively. R 0 A for the nBnnn+ detector was found to range from 200 Ω cm2 to 0.6 Ω cm2 at T = 200 K to 300 K, respectively.  相似文献   

10.
The standard transmission line model cannot be applied to evaluate the contact resistivity of thin TiN layers on highly doped p+ and n+ substrates because the finite sheet resistance of the TiN must be accounted for. We present two ways to include this effect using existing analytical models. The results are shown to agree with measurements where the effect of the finite sheet resistance of TiN is eliminated with a metallic overlayer. With the help of these evaluation techniques, it is shown that the contact resistivity of TiN changes in opposite ways for p+ and n+Si after vacuum annealing at 600°C for 15 min. This result is consistent with an increase of the barrier height φBn of the contact by ?0.1 V to near midgap value.  相似文献   

11.
Electrostatic force microscopy was used to study the potential distribution in a forward-biased epitaxial-diffused n +-n-p-p + silicon diode. Distributions of potential and capacitance were determined across the cleaved surface, which intersected the layers in the diode structure. Variations in the surface potential and capacitance were preliminarily measured with a submicrometer spatial resolution and were used to determine the position and width of the n-p junction; the distribution of applied forward bias in the diode was also assessed. It is shown that an additional potential barrier for injected charge carriers may exist in the vicinity of the n +-n junction in the diode under consideration. For an injection-current density exceeding 100 mA/cm2, the voltage drop across this barrier becomes comparable with the voltage variations across the operating n-p junction.  相似文献   

12.
A new design concept for diffusion barriers in high‐density memory capacitors is suggested, and both RuTiN (RTN) and RuTiO (RTO) films are proposed as sacrificial oxygen diffusion barriers. The newly developed RTN and RTO barriers show a much lower sheet resistance than various other barriers, including binary and ternary nitrides (reported by others), up to 800 °C, without a large increase in the resistance. For both the Pt/RTN/TiSix/n++poly‐plug/n+ channel layer/Si and the Pt/RTO/RTN/TiSix/n++poly‐plug/n+ channel layer/Si contact structures, contact resistance—the most important electrical parameter for the diffusion barrier in the bottom electrode structure of capacitors—was found to be as low as 5 kohm, even after annealing up to 750 °C. When the RTN film was inserted as a glue layer between the bottom Pt electrode layer and the TiN barrier film in the chemical vapor deposited (Ba,Sr)TiO3 (CVD–BST) simple stack‐type structure, the RTN glue layer was observed to be thermally stable to temperatures 150 °C higher than that to which the TiN glue layer is stable. Moreover, the capacitance of the physical vapor deposited (PVD)–BST simple stack‐type structure adopted TiN glue layer initially degraded after annealing at 500 °C, and, thereafter, completely failed. In the case of the RTN and RTO/RTN glue layers, however, the capacitance continuously increased up to 550 °C. Thus, the new RTN and RTO films, which act as diffusion barriers to oxygen, are very promising materials for achieving high‐density capacitors.  相似文献   

13.
Hg1−x Cd x Te mid-wavelength infrared (MWIR) p +-n -n + and p +-n avalanche photodiodes (APDs) with a cut-off of 4.9 μm at 80 K were fabricated on Si substrates. Diode characteristics, avalanche characteristics, and excess noise characteristics were measured on two devices. Temperature-dependent diode and avalanche characterization was performed. Maximum 3 × 106 Ω cm2 and 9 × 105 Ω cm2 zero-bias resistance times active area (R 0 A) products were measured for the p +-n -n and p +-n devices at 77 K, respectively. Multiplication gains of 1250 and 410 were measured at −10 and −4 V for the p +-n -n + and p +-n APDs at 77 K, respectively, in the front-illumination mode with the help of a laser with an incident wavelength of 632 nm. The gains reduce to 200 and 50 at 120 K, respectively. The excess noise factor in all APDs was measured to be in the range of 1 to 1.2.  相似文献   

14.
The parameters of multilayer CdxHg1–xTe heterostructures for photodetectors operating at wavelengths of up to 5 μm, grown by molecular-beam epitaxy (MBE) on silicon substrates, are studied. The passivating properties of thin CdTe layers on the surface of these structures are analyzed by measuring the C–V characteristics. The temperature dependences of the minority carrier lifetime in the photoabsorption layer after growth and thermal annealing are investigated. Samples of p +n-type photodiodes are fabricated by the implantation of arsenic ions into n-type layers, doped with In to a concentration of (1–5) × 1015 cm–3. The temperature dependences of the reverse currents are measured at several bias voltages; these currents turn out to be almost two orders of magnitude lower than those for n +p-type diodes.  相似文献   

15.
In this article, the characteristics of InP/InGaAs heterostructure-emitter bipolar transistors with 30 n-InP layer tunneling layers and a five-period InP/InGaAs superlattice are demonstrated and comparatively investigated by experimentally results and analysis. In the three devices, a 200 Å n-In0.53Ga0.47As layer together with an n-InP tunneling emitter layer (or n-InP/n-InGaAs superlattice) forms heterostructure emitter to decrease collector-emitter offset voltage. The results exhibits that the largest collector current and current gain are obtained for the tunneling transistor with a 30 Å n-InP tunneling emitter layer. On the other hand, some of holes injecting from base to emitter will be blocked at n-InP/n-InGaAs heterojunction due to the relatively small hole transmission coefficient in superlattice device, which will result in a considerable base recombination current in the n-InGaAs layer. Therefore, the collector current and current gain of the superlattice device are the smallest values among of the devices.  相似文献   

16.
4H-SiC Schottky barrier diodes (SBDs) were fabricated and characterized from room temperature to 573 K using HfNxBy as Schottky electrodes. The results are compared to SBDs fabricated using other electrodes that include Ni, Pt, Ti and Au. The Schottky barrier height Φb for as-deposited HfNxBy/n−/n+ diodes, determined from room temperature current-voltage characteristics, is 0.887 eV. This is lower than those of SBDs fabricated using other metals such as Au, where Φb is 1.79 eV. The HfNxBy/n−/n+ diodes studied have a much higher on-resistance Ron of around 38.24 mΩ-cm2, which is about four times that of Au/n−/n+ diodes, due to the higher sheet resistance of the sputtered HfNxBy electrode layer. The barrier height Φb and ideality factor η of the HfNxBy/n−/n+ diodes remain almost unchanged after 400 and 750 °C anneal in N2. This suggests excellent thermal and chemical stability of HfNxBy in contact with 4H-SiC.  相似文献   

17.
Monolithic dual-junction GaInP/GaAs solar cells grown by the MOCVD method were studied. The conditions of the growth of ternary Ga x In1?x P and Al x In1?x P alloys lattice-matched to GaAs are optimized. Technology for fabrication of a tunneling diode with a high peak current density of 207 A/cm2 on the basis of heavily doped n ++-GaAs:Si and p ++-AlGaAs:C layers is developed. Cascade GaInP/GaAs solar cells obtained as a result of relevant studies featuring a good efficiency of the solar-energy conversion both for space and terrestrial applications. The maximum value of the GaInP/GaAs solar-cell efficiency was 30.03% (at AM1.5D, 40 suns).  相似文献   

18.
A new mechanism describing the rise in the contact resistance ?? c of ohmic contacts to n-n +-n ++-GaAs(GaP, GaN, InP) structures with increasing measurement temperature T, experimentally observed in the temperature range 100?C400 K, is suggested on the basis of a theoretical analysis of the temperature dependence of ?? c . Good agreement between the experimental and theoretical ?? c (T) dependences is obtained and explained for a case where there is a high density of dislocations (on which metallic shunts are localized) in the near-contact region of the semiconductor.  相似文献   

19.
We have fabricated p+-n and Schottky diodes with contacts made of laser-formed palladium-silicide. The electrical characteristics of these diodes are presented. The reverse currents and breakdown voltages are comparable to conventionally contacted p+-n diodes. The barrier height of laser-formed Schottky diodes agrees well with published values for Pd2Si. The promising results point out the potential applications of contact formation by laser irradiation in device manufacture.  相似文献   

20.
The operation of variband-In x(z)Ga1 − x(z)As Gunn diodes with an active-region length of 2.5 μm and an n +-n cathode contact is studied by using a two-temperature model of electron intervalley transfer in a varib-and semiconductor. It is established that, in diodes, dipole domains or accumulation layers may be formed depending on the variband-layer thickness. The use of variband In x(z)Ga1 − x(z)As in the active region with an appropriate variband-layer thickness allows one to enhance the output power and the generation efficiency by a factor of approximately 1.5 and to increase the width of the frequency range of the diode operation approximately twofold as compared to that of an In0.2Ga0.8As-based diode. Original Russian Text ? Yu.V. Arkusha, E.D. Prokhorov, I.P. Storozhenko, 2006, published in Radiotekhnika i Elektronika, 2006, Vol. 51, No. 3, pp. 371–378.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号