首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the selective area epitaxy of GaAs by chemical beam epitaxy, using tri-isopropylgallium as the Ga source. The results show that GaAs can be selectively grown at a rate of up to ∼0.36 μm/h on patterned GaAs substrates at temperatures as low as 380°C. A low selective growth temperature allows us to utilize deep-ultraviolet radiation to modify the GaAs surface oxides for use as the masking material. We found that excess AsH3 over-pressure degrades the selectivity significantly, and the maximum selective growth thickness is limited by a critical total adatom coverage on the mask. In addition, the low selective growth temperature does not result in a very high C background concentration. Initial Hall measurements indicate that unintentional C doping levels are at least two orders of magnitude lower than those in GaAs layers grown under comparable conditions using trimethylgallium.  相似文献   

2.
A concept for in situ device processing has been demonstrated by the fabrication of Au/CdTe device like structures using shadow mask selective area epitaxy (SAE) and in situ metallization. Patterned CdTe epilayers were grown in the molecular beam epitaxy (MBE) chamber using shadow mask SAE (in situ patterning) and then directly transferred within ultrahigh vacuum (UHV) into a metal evaporation chamber for patterned Au deposition (in situ metallization). Excellent pattern definitions of both the CdTe and Au layers were obtained. Good metal adhesion properties and low levels of contamination at the metal-semiconductor interface were observed. A specially designed mask fixture that allows the mask to be placed and removed within the UHV chamber was implemented to perform this work.  相似文献   

3.
Amorphous layers of CdTe deposited on Cd or Zn terminated GaAs {001} surfaces can be recrystallized above ∼200°C. Subsequent molecular beam epitaxy of CdTe proceeds in a two-dimensional mode and leads to layers which are specular and single domain {0011}. Threading dislocation density in these layers was 1–2 x 105 cm−2. Values of full width at half maximum for x-ray rocking curves were as low as 80 arc-s.  相似文献   

4.
We have systematically studied the growth of CdTe (lll)B on Si(001)with different atomic step structures, defined uniquely by miscut tilt angle and direction. X-ray double crystal rocking curve (DCRC) analysis has been used to evaluate the crystalline quality and twin content of the films. High-resolution electron microscopy has been used to examine the CdTe(lll)B/Si(001) interface and to follow the microstructural evolution as a function of distance from the interface. Our results show that the formation of double domains and twins is very sensitive to the tilt parameters. When growth conditions are optimized, twins are not observed at distances greater than about 2.5 microns from the substrate surface. The best quality films exhibit a DCRC FWHM of 60 arc sec, for a film thickness of 17 μm, the lowest value ever reported for heteroepitaxial growth of CdTe on Si or GaAs. In efforts to improve the nucleation process, precursors such as Te and As have been used, and we have shown that they improve the stability of the heterointerface.  相似文献   

5.
Ammonia cracking efficiencies on various surfaces were examined. The following is an ordering of surfaces according to their ammonia cracking efficiencies: GaN (highest), Si3N4, SiO2 (lowest). Selective area growth of GaN was performed over SiO2 masks deposited on GaN previously grown on sapphire substrates using ammonia-based molecular beam epitaxy. GaN growth on patterned SiO2/GaN is very selective at a growth temperature of 800°C. Good quality growth occurs in the window region with no deposits on the mask surface when growth is performed at 800°C, whereas some deposits on the SiO2 masks accumulate when growth is performed at 700°C. The ratio of lateral growth rate to vertical growth rate is ≤1.  相似文献   

6.
Spectroscopic ellipsometry and photoreflectance measurements on CdTe/GaAs strained heterostructures grown by moleculclr beam epitaxy were carried out to investigate the effect of the strain and the dependence of the lattice parameter on the CdTe epitaxial layer thicknesses. Compressive strains exist in CdTe layers thinner than 2 μm. As the strain increases, the value of the critical-point energy shift increases linearly. These results indicate that the strains in the CdTe layers grown on GaAs substrates are strongly dependent on the CdTe layer thickness. Author to whom all correspondence should be addressed.  相似文献   

7.
Double-crystal x-ray rocking curve (DCRC) and secondary-ion mass-spectroscopy (SIMS) measurements have been performed to investigate the effect of rapid thermal annealing on the interdiffusion behavior of Hg in HgTe/CdTe superlattices grown on Cd0.96Zn0.04Te (211)B substrates by molecular beam epitaxy. The sharp satellite peaks of the DCRC measurements on a 100-period HgTe/CdTe (100Å/100Å) superlattice show a periodic arrangement of the superlattice with high-quality interfaces. The negative direction of the entropy change obtained from the diffusion coefficients as a function of the reciprocal of the temperature after RTA indicates that the Hg diffusion for the annealed HgTe/CdTe superlattice is caused by an interstitial mechanism. The Cd and the Hg concentration profiles near the annealed HgTe/CdTe superlattice interfaces, as measured by SIMS, show a nonlinear behavior for Hg, originating from the interstitial diffusion mechanism of the Hg composition. These results indicate that a nonlinear interdiffusion behavior is dominant for HgTe/CdTe superlattices annealed at 190°C and that the rectangular shape of HgTe/CdTe superlattices may change to a parabolic shape because of the intermixing of Hg and Cd due to the thermal treatment.  相似文献   

8.
CdTe layers have been grown by molecular beam epitaxy on 3 inch nominal Si(211) under various conditions to study the effect of growth parameters on the structural quality. The microstructure of several samples was investigated by high resolution transmission electron microscopy (HRTEM). The orientation of the CdTe layers was affected strongly by the ZnTe buffer deposition temperature. Both single domain CdTe(133)B and CdTe(211)B were obtained by selective growth of ZnTe buffer layers at different temperatures. We demonstrated that thin ZnTe buffer layers (<2 nm) are sufficient to maintain the (211) orientation. CdTe deposited at ∼300°C grows with its normal lattice parameter from the onset of growth, demonstrating the effective strain accommodation of the buffer layer. The low tilt angle (<1°) between CdTe[211] and Si[211] indicates that high miscut Si(211) substrates are unnecessary. From low temperature photoluminescence, it is shown that Cd-substituted Li is the main residual impurity in the CdTe layer. In addition, deep emission bands are attributed to the presence of AsTe and AgCd acceptors. There is no evidence that copper plays a role in the impurity contamination of the samples.  相似文献   

9.
In this paper, we present all the successive steps for realizing dual-band infrared detectors operating in the mid-wavelength infrared (MWIR) band. High crystalline quality HgCdTe multilayer stacks have been grown by molecular beam epitaxy (MBE) on CdZnTe and CdTe/Ge substrates. Material characterization in the light of high-resolution x-ray diffraction (HRXRD) results and dislocation density measurements are exposed in detail. These characterizations show some striking differences between structures grown on the two kinds of substrates. Device processing and readout circuit for 128×128 focal-plane array (FPA) fabrication are described. The electro-optical characteristics of the devices show that devices grown on Ge match those grown on CdZnTe substrates in terms of responsivity, noise measurements, and operability.  相似文献   

10.
A comprehensive study of the properties of undoped and iodine-doped CdTe structures by photoluminescence (PL) and photoreflectance (PR) is reported. Undoped bulk CdTe and iodine-doped CdTe layers grown by metalorganic molecular beam epitaxy on (lOO)-oriented CdTe and (211)B-oriented GaAs substrates with electron concentrations ranging from 1014 to mid-1018 cm-3 were included in this study. Lineshape modeling of 80KPL and PR spectra indicated the presence of both free exciton and donor-hole transitions at the higher doping levels. Strong PL and PR signals were also observed at room temperature. If only a single transition is considered for the analysis of the 300K spectra, the PL emission peak and the PR transition energy both exhibit a strong dependence on electron concentration for doped layers. However, lineshape modeling of the room-temperature spectra indicated the presence of multiple transitions consisting of free exciton and direct band-to-band transitions. The use of two transitions resulted in a constant value of bandgap over the entire range of conductivities studied. A strong correlation remained between the broadening of the PR and PL spectra and excess carrier concentration ND-NA. In addition, the E1 transition energy measured by PR was found to vary dramatically with growth conditions.  相似文献   

11.
A study is reported of the dynamics of dopant incorporation in iodine doped CdTe. Using a mathematical formulation, the iodine doping profiles in CdTe and HgCdTe have been fitted to experiment to obtain material parameters such as the bulk and surface diffusion and the segregation energy. Dopant profile fitting showed that iodine diffusion was insignificant and gave an iodine segregation energy of 0.6 eV and a surface diffusivity enhancement factor of 300 at a growth temperature of 230°C. The model was used to determine the effect of the growth rate and temperature for particular growth conditions.  相似文献   

12.
Nitrogen doping in CdTe epilayers grown by photo-assisted molecular beam epitaxy was demonstrated using an rf plasma source. The effect of the presence of atomic hydrogen during growth of undoped and nitrogen-doped CdTe was investigated. The layers were characterized using photoluminescence spectros-copy (PL), Hall effect, secondary ion mass spectroscopy (SIMS), Fourier transform infrared spectroscopy, and atomic force microscopy. PL confirmed the incorporation of nitrogen as acceptors. While p-type carrier concentrations greater than 1018 cm−3 were easily obtained, SIMS measurements indicated that nitrogen was concentrated near the undoped-doped and epilayer-substrate interfaces which complicates interpretation of activation efficiency. Hydrogen incorporation was found to be enhanced by the presence of nitrogen. Infrared absorption measurements strongly suggested the formation of N-H complexes. Hall measurements indicated that complexes are formed which are donor-like in nature. The presence of atomic hydrogen during growth radically changed the low temperature photoluminescence in both undoped and nitrogen-doped layers. Exciton-related luminescence was quenched at low temperature. Nitrogenrelated donor-acceptor pair luminescence was also absent from the N-doped hydrogenated layers, consistent with complex formation. Copper (a cation-site acceptor) donor-acceptor pair luminescence appeared to be enhanced by hydrogenation.  相似文献   

13.
In this paper, we report on the atomic layer epitaxy (ALE) of CdTe on GaAs and Si by the organometallic vapor phase epitaxial process at atmospheric pressure. Self-limiting growth at one monolayer was obtained over the temperature range from 250°C to 320°C, under a wide range of reactant pressure conditions. A study of growth mechanism indicates that DMCd decomposes into Cd on the surface and the Te precursors react catalytically on the Cd covered surface. We have used this ALE grown layer to improve the crystal quality and the morphology of conventionally grown CdTe on GaAs. Improvement in the crystal quality was also observed when ALE CdTe nucleation was carried out on Si pretreated with DETe at 420°C. Atomic layer epitaxy grown ZnTe was used to obtain (100) oriented CdTe on (100) silicon.  相似文献   

14.
Narrow-bandgap PbSnSe has received much attention as a promising alternative material for mid- and long-wavelength high performance of infrared detection at relatively high operating temperatures owing to the weak composition dependence of its bandgap, which can intrinsically result in better uniformity. Additionally, it possesses a high dielectric constant that is anticipated to be much more tolerant to defects. In addition, its growth by molecular beam epitaxy (MBE) can be easily accomplished in comparison with HgCdTe and many III–V quantum well and superlattice materials. However, overcoming the high lattice and thermal mismatches between PbSnSe and CdTe/Si substrates and improving the crystalline quality of PbSnSe grown on CdTe/Si substrates are challenges that require further study. Additionally, interdiffusion between CdTe and PbSnSe can take place and lead to nonuniform distributions of elements in PbSnSe. Epitaxial crystal PbSnSe alloy films were grown by MBE and were investigated by scanning and high-resolution transmission electron microscopy (STEM/HRTEM). Etch pit density (EPD) measurements were done to determine the density of threading defects in the films. EPD measurements on PbSnSe surfaces gave values in the mid-106 cm−2 range. The dislocations exposed as etch pits were found to accumulate and form small-angle grain boundaries lined up along the () direction, which is the intersection line between (100) and (211) growth planes.  相似文献   

15.
Molecular beam epitaxy (MBE) is an advanced deposition technique known to produce high quality semiconductor films and structures. While great progress has been achieved in recent years, MBE still suffers from problems with elemental flux control which include: flux instabilities, long respoNSe times, significant transients, and difficulty of scaling to large area depositions. The elemental vapor transport epitaxy (EVTE) technique was formulated to resolve several problems typically accompanying conventional MBE. In EVTE, the vapor sources feed through regulating valves into a common flux distribution manifold that is located below the inverted wafer. We previously reported the EVTE growth of GaAs without gallium source related oval defects. In this paper, we report on EVTE deposition of the ZnSe, ZnTe, CdSe, CdTe, and ZnTe-ZnSe on GaAs (100) substrates. We have achieved selenium elemental flux control with respoNSe times less than one second and deposited films thickness uniformity ± 1.8% over a 2.0″substrate. Elemental vapor transport epitaxy grown materials show good surface morphology and stoichiometry, sharp interface, and low outdiffusion from the substrate. X-ray analysis showed crystallinity (FWHM = 95 arcsec) of the ZnSe films.  相似文献   

16.
N-type ZnSe with electron concentration up to 3 × 1020 cm−3 and low resistivity down to 1 × 10−4 ohm-cm, has been grown using a selective doping technique with chlorine during molecular beam epitaxy. The photoluminescence evaluation shows that the selectively doped ZnSe layers are superior to uniformly doped ones, especially for the case of high-concentration chlorine doping. The in-depth profile of chlorine concentration in a selectively doped sample was measured with secondary-ion mass spectroscopy (SIMS). The SIMS analysis shows only slight diffusion of the incorporated chlorine atoms even in highly doped samples.  相似文献   

17.
Using the molecular beam epitaxial (MBE) technique, CdTe and Hg1-xCdxTe have been grown on Cr-doped GaAs (100) sub-strates. A single effusion cell charged with polycrystal-line CdTe is used for the growth of CdTe films. The CdTe films grown at 200 °C with a growth rate of ~ 2 μm/hr show both streaked and “Kikuchi” patterns, indicating single crystalline CdTe films are smoothly grown on the GaAs sub-strates. A sharp emission peak is observed at near band-edge (7865 Å, 1.577 eV) in the photoluminescence spectrum at 77 K. For the growth of Hg1-xCdxTe films, separate sources of HgTe, Cd and Te are used. Hg0.6Cd0.4Te films are grown at 50 °C with a growth rate of 1.7 μm/hr. The surfaces are mirror-smooth and the interfaces between the films and the substrates are very flat and smooth. As-grown Hg0.6Cd0.4Te films are p-type and converted into n-type by annealing in Hg pressure. Carrier concentration and Hall mobility of an annealed Hg0.6Cd0.4Te film are 1 × 1017 cm?3 and 1000 cm2/V-sec at 77 K, respectively.  相似文献   

18.
CdTe(lll)B layers have been grown on misoriented Si(001). Twin formation inside CdTe(lll)B layer is very sensitive to the substrate tilt direction. When Si(001) is tilted toward [110] or [100], a fully twinned layer is obtained. When Si(001) is tilted toward a direction significantly away from [110], a twin-free layer is obtained. Microtwins inside the CdTe(111)B layers are overwhelmingly dominated by the lamellar twins. CdTe(111)B layers always start with heavily lamellar twinning. For twin-free layers, the lamellar twins are gradually suppressed and give way to twin-free CdTe(111)B layer. The major driving forces for suppressing the lamellar twinning are the preferential orientation of CdTe[11-2] along Si[1-10] and lattice relaxation. Such preferential orientation is found to exist for the CdTe(111)B layers grown on Si(001) tilted toward a direction between [110] and [100].  相似文献   

19.
CdTe B was grown on As-terminated Si(111) by molecular beam epitaxy (MBE). Nucleation and interface properties were studied by photoelectron spectroscopy, scanning tunneling microscopy, electron diffraction, and energy-dispersive spectroscopy of x-rays. Selective growth on Si(111) was investigated either by using SiO2 as a mask, or by growing on a patterned CdTe seed layer. The highest temperature where CdTe nucleates on As-terminated Si(111) surfaces is typically in the range of 220–250°C. On a SiO2 mask, CdTe nucleates at the same temperatures, leading to polycrystalline growth. However, homoepitaxy of CdTe is possible around 300°C. Hence, CdTe can be grown selectively on a patterned CdTe seed layer on Si(111). This is confirmed by scanning electron microscopy and scanning Auger microscopy.  相似文献   

20.
Complete selective area growth of InP could be achieved at standard molecular beam epitaxial growth temperatures by using solid source epitaxy with an additional hydrogen rf-plasma (27 MHz) excited in the reaction chamber. By optimization of the process parameters such as substrate temperature, plasma power, and phosphorus overpressure, mirror-like InP-layers with geometry independent growth rates were grown on SiN-patterned InP substrates without polycrystalline growth on the mask. Since selective growth is also possible in an argon plasma, we conclude that a physical desorption process is the mechanism for selective area growth in this plasma assisted epitaxy method. Furthermore, the selectivity can be controlled by a dc-bias of the substrate, which influences the mean energy of the impinging ions, thereby changing the desorption rate of atoms from the mask.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号