首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microstructure and mechanical properties of two aluminium-based composites reinforced with Nicalon fibre are investigated. During composite processing, aluminium carbide forms at the interface as a result of a reaction between aluminium and free carbon in the fibre. Magnesium, when present in the aluminium matrix, diffuses into the outer (~ 200 nm) layer of the fibre where it reacts with the silicon oxycarbide constituent to form magnesium-containing oxide and also to free carbon for the production of more interfacial aluminium carbide. These chemical reactions affect to differing degrees the strength of a fibre, as measured after extraction from the two composites, and influence the respective fibre/matrix interfacial friction stress and composite strength. A simple rule-of-mixtures approach based upon the measured strength of extracted fibres gave some agreement with longitudinal properties of the composite, but treatment of the fibres as bundles, using a Weibull probability distribution of properties, provided more accurate predictions.  相似文献   

2.
Measured ultimate tensile strengths in unidirectional fibre-reinforced composite materials have been observed to deviate from the linear predictions of the classical rule-of-mixtures relationship. The physical factors responsible are fibre-fibre interaction, inhomogeneous fibre distribution in the matrix and fibre misorientation to the loading direction. A recent modification to the classic rule-of-mixtures to account for fibre-fibre interaction has already resulted in good agreement between measured and predicted values of ultimate tensile strengths at high fibre volume fractions for Kevlar/epoxy composites. Additional modifications to the rule of mixtures to incorporate both fibre misorientation and inhomogeneous spread have been presented here. These modifications result in greater agreement between measured and predicted ultimate tensile strengths at low fibre volume fractions while retaining the accuracy of prediction at higher fibre volume fractions. Good agreement between measured and predicted values of inhomogeneous fibre spread were obtained at high fibre volume fractions. Furthermore, these additions to the classic rule-of-mixtures can be used to gauge the extent of each of the physical factors responsible for ultimate tensile strength reduction in unidirectional composite materials.  相似文献   

3.
In unidirectionally reinforced composites with an elastic-plastic matrix, there is a plastic zone with lengthY 0 proportional to the crack lengthC (Y 0 C) at the tip of a crack. This results in a new logarithmic dependence of glass and aramid PABI fibre-reinforced plastics (FRP) on crack length and non-fulfilment of the Griffith criterion. In glass and PABI FRP without an artificial notch, defects already exist equivalent to a crack with a length depending on composite fabrication practice. In GFRP, the epoxy matrix shear yield stress grows 2.0 to 2.5 times, compared to the yield in thin films due to fibre constraint of matrix yielding. The stress distribution in front of a crack in a highly anisotropic composite with an elastic-plastic matrix is derived. The stress concentration at the tip of a crack grows with increasing matrix yield stress, resulting in a change of failure mode from accumulation of fibre breaks at low matrix strength, to brittle failure at high matrix strength. The following factors lead to composite embrittlement: (1) increase of matrix yield stress and composite shear strength; (2) decrease of temperature; (3) increase of Young's modulus of the fibre; (4) reduction of fibre strength. The dependence of aramid PPTA FRP strength on temperature exhibits a maximum. Epoxy matrix plastification leads to some increase of aramid PPTA FRP strength.  相似文献   

4.
The tensile strength of short fibre-reinforced composites   总被引:2,自引:0,他引:2  
Tensile strength is one of the most important mechanical properties of structural short fibre composites, and its prediction is essential for composite design. This paper develops a strength theory for three-dimensionally oriented short fibre-reinforced composites. The contribution of direct fibre strengthening to the composite strength is derived using a maximum-load composite failure criterion. Other strengthening mechanisms, such as residual thermal stress, matrix work hardening and short fibre dispersion hardening are also incorporated into the calculation of composite strength. In the derivation of direct fibre strengthening, the strain and stress of short fibres with different inclination angles were first derived, and the direct fibre strengthening was calculated from the maximum total load these short fibres can carry in the composite loading direction. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

5.
Residual Stress in Continuous Fibre Reinforced Aluminium Matrix Composites Prepared by Modified Investment Casting The residual stresses between matrix und fibres in the continuous γ‐Al2O3 fibre reinforced aluminium alloy (AlZn6Mg1Ag1) matrix composites prepared by modified investment casting were measured with x‐ray diffraction as well as simulated with FEM. It was indicated as expected that tensile residual stress exists in the Matrix und compressive residual in the fibre. The average value of the residual stress in both matrix and fibre in the composites is not very significant. However it is distributed very unevenly. Next to the interface between matrix and fibre there is a small zone in the matrix with relative great tensile residual stress. The effect of fibre volume percentage on the residual stress in the composite was also analysed. With increase of the fibre volume percentage the tensile residual stress in the matrix increases while the compressive residual stress in the fibre decreases. If the fibre volume percentage in the composite exceeds 65 %, the maximal tensile residual stress will reach the yield stress of the matrix alloy and local plastic deformation will occur.  相似文献   

6.
《Composites Part A》2001,32(3-4):561-567
An important damage mechanism during fatigue of unidirectional SiC-fibre reinforced titanium alloys is the formation of matrix cracks transverse to the fibre direction. Due to the relatively low fibre/matrix bond strength these matrix cracks initially do not break the fibres, so that matrix cracks bridged by fibres develop. It is shown experimentally, that the strong drop in fatigue strength is caused by the formation of a bridged crack of a critical size and the crack propagation rate (da/dN) for a single load level has been determined. A prediction of da/dN on the basis of finite element calculation of the stress intensity factor range of the bridged matrix crack ΔKm and the ΔKm–da/dN relationship of the used titanium alloy (Timetal 834) has been performed. Calculation of ΔKm assuming a negligible fibre/matrix bond strength and considering shear load transfer at the fibre/matrix interface due to Coulomb friction (coefficient of friction μ=0.5 and μ=0.9) led to a large discrepancy between the measured and predicted crack growth rate. It can be concluded, that the assumed conditions of stress transfer at the fibre/matrix interface neglecting bonding is the reason for this discrepancy.  相似文献   

7.
Al2O3-SiO2纤维增强ZL108合金复合材料的强度特性   总被引:3,自引:1,他引:2       下载免费PDF全文
用低成本的Al2O3-SiO2系纤维作为增强相,通过加压铸造法制作ZL108合金复合材料,并对该复合材料和ZL108合金进行不同温度下的时效处理和压缩试验。通过DSC、EPMA和TEM分析认为:经488K、0.5h时效处理(T6处理)的Vf 20%的复合材料在573K以下的压缩屈服强度低于ZL108合金,是由于基体中的Mg与Al2O3-SiO2纤维在加压铸造过程中起化学反应而生成MgAl2O4,损耗了基体中的大量Mg,导致基体铝合金时效硬化效果很差,所以压缩屈服强度低下。623K、720h保温后的Vf 20%的复合材料的压缩屈服强度比ZL108合金要高得多,是由于在这种温度环境下对ZL108合金来说是过时效,所以纤维的增强怍用显得明显。在高温(673K)下Vf 20%的复合材料的屈服强度比ZL108台金高一倍左右。不论在什么温度场合下Vf5%的复合材料的屈服强度比Vf 20%的复合材料都低。  相似文献   

8.
In recent years, there has been a wide interest in fillers which improve the quality and performance of fibre composites when mixed in a small quantity in the matrix. In the present work the effect of addition of mica and graphite powders in cross ply glass fibre reinforced plastic (GRP) composites has been studied by using acousto ultrasonic (AU) technique. The mechanical strengths of these composites were correlated with fibre volume fraction (V f). The stress wave factor (SWF) was evaluated and correlated with tensile/flexural strengths of these composite specimens. The observations show a linear relationship between the SWF values and strength of unfilled and filled GRP composites.  相似文献   

9.
《Composites》1990,21(1):63-69
Mechanical behaviour, tensile strength and failure modes in real unidirectional Kevlar/epoxy composites, loaded parallel to the fibres, at volume fraction (Vf) range 0.26–0.73, were investigated. It was found that the measured tensile strengths deviated from the expected values calculated from the Rule of Mixture. The deviation, which was minimal at Vf of about 0.5, was mainly due to geometrical deficiencies typical of real composites. At Vf<0.5 it could be explained by non-homogeneous fibre spread and distribution of fibres. At Vf>0.5 the deviation was explained by the increasing lack of matrix between some adjacent fibres and by squeezing of fibres. The initial part of loading was typified by straightening out of non-axial fibres, accompanied by fibre/matrix debonding. The straightening process was completed at a stress level of about 0.6–0.7 of the composite strength. Matrix damage began at this stress level and continued to develop up to final failure. Failure of Kevlar fibres was noted to occur only at an extremely short loading interval coinciding with the catastrophic final failure. This was due to the small scatter of Kevlar fibre strength.  相似文献   

10.
In this paper, SiO2f/SiO2 composites reinforced by 3D four‐directional braided quartz preform were prepared by the silica sol‐infiltration‐sintering method in a relatively low sintering temperature (450 °C). To characterize the mechanical properties of the composites, mechanical testing was carried out under various loading conditions, including tensile, flexural and shear loading. The microstructure and the fracture behaviour of the 3D four‐directional braided SiO2f/SiO2 composites were studied. The tensile strength, flexural strength and the in‐plane shear strength were 30.8 MPa, 64.0 MPa and 22.0 MPa, respectively. The as‐fabricated composite exhibited highly nonlinear stress–strain behaviour under all the three types of loading. The tensile and flexural fracture mechanisms were fully discussed. The fracture mode of the 3D four‐directional braided SiO2f/SiO2 composite in the Iosipescu shear testing was based on a mixed mechanism because of the multi‐directivity of the composite. Owing to low sintered temperature, the fibre/matrix interfacial strength was weak. The SiO2f/SiO2 composites showed non‐catastrophic behaviour resulting from extensive fibre pull‐out during the failure process.  相似文献   

11.
Previous theories for the impact strength of discontinuously-reinforced composites predict that the toughness is a maximum when critical transfer length fibres are used. Experiments utilizing mini-Charpy specimens of unidirectional boron-fibre-reinforced epoxy composites have been conducted which corroborate this prediction. However, calculations of the fracture energy, based on a uniform interfacial shear stress during fibre pull-out, proved inadequate for the reinforced epoxy composites. Revisions to existing theories are presented to take into account the non-uniformity of the interfacial shear stress distribution along the fibre length and catastrophic failure of the interfacial bond.Nomenclature A f fibre cross-sectional area - E f fibre Young's modulus - G m matrix shear modulus - l fibre length - L fibre pull-out length - l c fibre critical length - r fibre radius - R half fibre centre-to-centre spacing - V f fibre volume fraction - W mean work of fracture per unit area of specimen cross-section - x distance from fibre end - y dummy variable of integration - surface energy - strain in composite - tensile stress on fibre - f fibre fracture strength - interfacial shear stress  相似文献   

12.
Abstract

In order to improve the interfacial adhesion between carbon fibre and resin matrix in composite materials, it is necessary to treat the surface of the carbon fibre. In this paper, γ-ray irradiation technique was used to modify polyacrylonitrile based carbon fibre. Laser Raman spectrum and X-ray photoelectron spectroscopy were used to investigate and analyse the structure and chemical composition near the surface of the carbon fibre. The influence of irradiation parameters on the interlaminar shear strength (ILSS) of carbon fibre reinforced epoxy composite materials and the bundle tension strength of carbon fibre was studied. The interfacial adhesion behaviour of composites was characterised using torsional braid analysis. The results show that after irradiation the ILSS of the composite was increased by 20%, while the glass transition peak of the specimen, determined from torsional braid analysis, shifts towards a higher temperature compared with an unirradiated specimen. The value of the glass transition temperature T g is increased from 416.8 to 424.3 K. After irradiation there was no apparent change in the bundle tensile strength of carbon fibre. Investigations indicate that after irradiation the decrease of microcrystal size, the increase of surface free energy of carbon fibre surface and the active chemical function group formed from unsaturated carbon atoms improve the interface adhesion between the carbon fibre and the matrix in the composites.  相似文献   

13.
In a fibre/metal matrix composite the mechanical properties of the matrix itself are changed by the presence of the reinforcing fibres. This changed behaviour of the metal is referred to asin situ behaviour, and a phenomenological model is developed to evaluate thein situ plastic stress-strain properties of a metallic matrix containing fibres, from a study of the properties of the composite. The model is based upon the idealised behaviour of the two components of the system. The application of the model to B/Al alloy composites shows that the plastic stress-strain behaviour of the matrix containing fibres varies strongly with the fibre volume content, and also that the matrixin situ cyclic stress-strain behaviour can be approximately described by a power law of the type: where the strength coefficient and the exponent increase with the fibre volume fraction. It also predicts that in the steady state fatigue behaviour of the composites, the fraction of load amplitude carried by the fibres decreases with increasing applied stress amplitude, and is also dependent on the fibre volume fraction. The effect of the applied stress on the damping capacity is established through expressions derived from the basic ideas involved in the model.  相似文献   

14.
The importance of high fracture toughness and reliability in Si3N4, and SiC-based structural ceramics and ceramic matrix composites is reviewed. The potential of these ceramics and ceramic matrix composites for high temperature applications in defence and aerospace applications such as gas turbine engines, radomes, and other energy conversion hardware have been well recognized. Numerous investigations were pursued to improve fracture toughness and reliability by incorporating various reinforcements such as particulate-, whisker-, and continuous fibre into Si3N4 and SiC matrices. All toughening mechanisms, e.g. crack deflection, crack branching, crack bridging, etc essentially redistribute stresses at the crack tip and increase the energy needed to propagate a crack through the composite material, thereby resulting in improved fracture toughness and reliability. Because of flaw insensitivity, continuous fibre reinforced ceramic composite (CFCC) was found to have the highest potential for higher operating temperature and longer service conditions. However, the ceramic fibres should display sufficient high temperature strength and creep resistance at service temperatures above 1000°C. The greatest challenge to date is the development of high quality ceramic fibres with associate coatings able to maintain their high strength in oxidizing environment at high temperature. In the area of processing, critical issues are preparation of optimum matrix precursors, precursor infiltration into fibre array, and matrix densification at a temperature, where grain crystallization and fibre degradation do not occur. A broad scope of effort is required for improved processing and properties with a better understanding of all candidate composite systems.  相似文献   

15.
Four kinds of polymer matrix composites (filler, E-glass or carbon fibre cloth; matrix, epoxy or polyimide resin) and pure epoxy and polyimide resins were irradiated with 60Co -rays or 2 MeV electrons at room temperature. Mechanical tests were then carried out at 77 K and at room temperature. Following irradiation, the Young's (tensile) modulus of these composites and pure resins remains practically unchanged even at 170 MGy for both test temperatures. The ultimate strength, however, decreases appreciably with increasing dose. The dose dependence of the composite strength depends not only on the combination of fibre and matrix in the composite but also on the test temperature. A relationship is found between the composite ultimate strain and the matrix ultimate strain, thus indicating that the dose dependence of the composite strength is virtually determined by a change in the matrix ultimate strain due to irradiation. Based on this finding, we propose a mechanism of radiation-induced degradation of a polymer matrix composite in order to explain the dose dependence of the composite strength measured at 77 K and at room temperature.  相似文献   

16.
The influence of moisture content in the environment during manufacture of a novel cobalt-free UP matrix reinforced with flax fibres, on the fibre–matrix adhesion was studied. Flax surface energy was experimentally determined by measuring contact angles on technical fibres, using the Wilhelmy technique and the acid–base theory. The mechanical strength of the interface under different humidity conditions was characterized by the critical local value of interfacial shear stress, τd, at the moment of crack initiation, which was assessed by single-fibre pull-out tests. Differential scanning calorimetry and X-ray photoelectron spectroscopy analysis gave further insight into the topic. The results suggest that the effect of humidity during manufacturing on the composite interface might be limited. However, longitudinal composite strength decreased somewhat for composites produced in humid conditions, showing that there is some detrimental effect of high levels of moisture during cure on the fibre mechanical performance, likely caused by some fibre degradation.  相似文献   

17.
Interlaminar shear properties of fibre reinforced polymer composites are important in many structural applications. Matrix modification is an effective way to improve the composite interlaminar shear properties. In this paper, diglycidyl ether of bisphenol-F/diethyl toluene diamine system is used as the starting epoxy matrix. Multi-walled carbon nanotubes (MWCNTs) and reactive aliphatic diluent named n-butyl glycidyl ether (BGE) are employed to modify the epoxy matrix. Unmodified and modified epoxy resins are used for fabricating glass fibre reinforced composites by a hot-press process. The interlaminar shear strength (ILSS) of the glass fibre reinforced composites is investigated and the results indicate that introduction of MWCNT and BGE obviously enhances the ILSS. In particular, the simultaneous addition of 0.5 wt.% MWCNTs and 10 phr BGE leads to the 25.4% increase in the ILSS for the glass fibre reinforced composite. The fracture surfaces of the fibre reinforced composites are examined by scanning electron microscopy and the micrographs are employed to explain the ILSS results.  相似文献   

18.
Abstract

The effect of interfacial properties on the strength of discontinuous reinforced metal-matrix composites is systematically studied by theoretical modelling. The calculations were carried out within the framework of continuum plasticity theory using cell models and the finite element method. A wide range of inclusion aspect ratios, volume fractions, and interfacial strengths were investigated for perfectly plastic and hardening matrices. Interfaces were modelled either as strongly bonded, or as shearable but strong normal to the inclusions, or as debonding at the reinforcement ends but strong on the sides. Additionally, the effects of reinforcement arrangement and extensive damage to continuous fibre composites were addressed. Debonding at the ends of the inclusions was found to have the most deleterious effect on the strength of the composite. When debonding does not occur but interface sliding takes place freely, an amount of strengthening is seen which is a function of the inclusion volume fraction but is primarily independent of the inclusion aspect ratio. For extensively damaged continuous fibre composites, a weak interface yields a steady-state composite flow strength slightly higher than the volume fraction of the matrix times the yield strength of the matrix. This increases linearly with the interfacial shear strength up to the level for strongly bonded composites and can be estimated from the intact fibre aspect ratio, the matrix yield stress, the volume fraction, and the interfacial strength  相似文献   

19.
Uniaxial fatigue damage analyses were performed on borosilicate glass-ceramic matrix, Nicalon (silicon carbide) fibre reinforced unidirectional composites. The fibre volume fraction varied from about 0.25 to 0.60. Load-controlled tension-tension fatigue tests (R ratio = 0.1) were conducted at room temperature and 540°C (1000°F). The fatigue life was found to decrease with increasing cyclic stress level and a power-law relationship of the form app = uts(2N f)b was established where app is the applied maximum stress, uts the monotonic tensile strength, N f is the number of cycles to failure and b is the fatigue strength exponent. The fatigue damage evolution manifested itself as a decrease in stiffness of the composite with fatigue cycles. This stiffness drop was associated with matrix cracking followed by fibre-matrix debonding and fibre sliding breakage/pull-out, and final failure, respectively at 540°C. The damage evolution at room temperature was associated with degradation of the matrix followed by steady breakage of fibres with no debonding/pull-out, leading to eventual failure of the net section of the composite. In general, quantitative microscopic observations of debonded and pulled-out fibres showed a good correlation with the observed reduction in stiffness. A predictive model to interpret the drop in stiffness is presented and validated using experimental results from the current study.  相似文献   

20.
This work investigates the residual strength of metal particulate reinforced ceramic matrix composites with periodically spaced, parallel cracks. A Fourier transform/integral equation method is used to obtain the stress intensity factor at the tips of the cracks bridged by the plastically stretched metal particulates. The crack bridging of metal particulates is described by a linear softening bridging law that relates the bridging stress and crack opening. The residual strength of the cracked composites is calculated using a stress intensity factor criterion with consideration of crack bridging. Numerical results are presented for three composite systems, i.e., WC/Co, Al2O3/Ni, and glass/Al composites to illustrate the effects of interactions between multiple cracks/bridging zones on the residual strength behavior of the reinforced ceramics with parallel cracks. It is found that for given volume fraction of metal particulate and debonding length of the particulate–matrix interface the residual strength increases with decreasing crack spacing. For a given crack spacing, the residual strength initially decreases dramatically with an increase in initial crack length and levels off for long initial cracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号