首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于无人驾驶领域的飞速发展,为提高道路行人目标检测的速度和精度,提出一种基于YOLOv5 网络改进的YW- YOLO的道路行人目标检测方法,在YOLOv5 模型的neck结构中改入RepGFPN, 充分交换高级语义信息和低级空间信息, 添加自适应融合机制,引入SimAM 注意力模块机制,提高算法的特征提取能力,在损失函数方面,使用Optimal Transport Asignment 优化损失函数。实验结果表明,所提算法与原算法相比,在道路行人类别数据集上识别精确率由38.1%提升到 52.6%,检测速度由29.4 fps 提高到30.8 fps, 具有更好的检测效果。  相似文献   

2.
针对电力设备背景复杂、小目标密集等特点导致无人机智能电力巡检精度低、效果不佳等问题,提出了一种改进YOLOv5的目标检测算法。首先在原模型上增加一层检测层,重新获取锚点框以便能更好地学习密集小目标的多级特征,提高模型应对复杂电力场景的能力;其次对模型的特征融合模块PANet结构进行改进,通过跳跃连接的方式融合不同尺度的特征,增强信息的传播与重用;最后结合协同注意力模块设计主干网络,以聚焦目标特征,增强复杂背景中密集目标区域的显著度。实验结果表明:所提算法的平均精度均值(IoU=0.5)达到97.1%,比原网络检测性能提升了5.6%,有效改善了复杂背景下小目标的错测、漏检现象。  相似文献   

3.
针对车辆行人检测中容易出现小目标错检、漏检的问题,提出了一种基于改进YOLOv5s的车辆行人检测算法,首先在不改变原有路径聚合网络(path aggregation network, PANet)的条件下,从头部网络引出第4个检测头,提高对小目标的检测能力,其次在主干网络中设计CF模块来代替原有的下采样模块,增强特征提取能力,然后将Neck网络中通道数减半的C3模块重新设计为S-C3,减少Neck部分的信息丢失问题,最后重新构建空间池化金字塔(spatial pyramid pooling-fast, SPPF)为D-SPP模块,为Neck部分保留更加细致的特征,提高对目标的检测精度。实验采用KITTI数据集,对数据集进行类别合并、删除等处理。实验结果表明,改进后的算法与原算法在KITTI上相比Person、Cyclist类分别提高4%和3.7%,平均精度均值(mAP)mAP@0.5提高2.3%。并且对小目标错检、漏检的问题有明显改善。  相似文献   

4.
印刷电路板作为电子产品不可或缺的重要组成部分,其市场需求量与日俱增,因此制造无缺陷的PCB具有重要意义;针对PCB缺陷检测中待检测的缺陷目标较小且多数检测目标与背景容易混淆导致的误检漏检,改进的算法在原生YOLOv5算法的骨干网络中引入坐标注意力机制,在颈部网络中引入Transformer Encoder并增加一个适用于小目标的高分辨率检测头,并且将选定锚框的交并比算法部分改为更先进的E-IoU。相较于原生YOLOv5算法,根据算法评价指标精确率,召回率和平均检测精度均值的结果,改进后的算法性能有显著提升,其中平均检测精度均值更是高达98.46%,且检测速度也达到了72.4 Hz,可以满足工业现场对PCB缺陷检测的精度要求。  相似文献   

5.
行人检测是目标检测领域的一个重要分支,目前行人检测算法已经取得了较好的发展,但拥挤场景下存在着行人间的严重遮挡,这为检测任务带来了极大地挑战.为有效缓解该问题,在YOLOv3的基础上进行改进,提出单阶段密集行人检测算法:Crowd-YOLO,该算法将可见框标注信息加入到网络中,使网络同时预测全身框与可见框信息从而提升检...  相似文献   

6.
针对目前无人机巡检中绝缘子缺陷检测的目标算法识别精度不高的问题,提出了一种改进的YOLOv5算法,该方法将注意力机制融入YOLOv5s算法中获取更多细节特征,采用BiFPN替换原本的特征金字塔结构,并用改进的损失函数和非极大值抑制提升检测精度。实验结果证明,相比于传统算法,改进算法的检测平均精度和召回率分别为96.6%和97.1%,检测速度FPS达到了28.5,满足输电线路绝缘子缺陷检测准确性、轻量性及鲁棒性要求。  相似文献   

7.
针对目前工业生产过程中存在砂纸表面缺陷人工质量检测精度低和检测效率低问题,提出一种基于YOLOv5网络模型融合CA注意力机制的砂纸表面缺陷自动检测方法。首先对砂纸生产过程中的砂纸表面图像进行采样,将收集到的砂纸表面缺陷图像分成脱砂、堆砂、划痕和褶皱4种缺陷类型来制作砂纸表面缺陷数据集;其次将YOLOv5主干网络中的C3模块与CA注意力机制结合,改进为CAC3模块;最后将改进前后的网络模型在自建砂纸表面缺陷数据集上进行训练和验证。实验结果表明:得到改进后的YOLOv5+CAC3网络模型,其P、R、mAP@0.5、mAP@0.5:0.95和S的数值分别为96.2%,92.9%,95.8%,65.0%,16.8 ms,相比于改进前的YOLOv5网络模型分别提高了1.1%、2.2%、0.6%、1.7%、4.5 ms。该方法在砂纸表面缺陷检测中精度高、速度快、检测稳定,符合砂纸生产过程中砂纸表面缺陷检测的要求。  相似文献   

8.
飞机蒙皮表面缺陷会影响飞机的气动特性,严重的甚至会影响飞行安全。针对飞机蒙皮表面缺陷检测精度不高的问题,提出一种基于改进YOLOv5的缺陷检测方法,对裂纹、腐蚀、划痕和撞击等4类缺陷进行检测。该方法首先对采集的飞机蒙皮表面缺陷数据集利用平均结构相似性(MSSIM)方法剔除相似性图像;接着,在YOLOv5的Backbone部分融入卷积块注意力模块(CBAM);最后,在Neck部分使用移动窗口转换模块(STB)替换CSP_2模块。实验结果表明,改进后的方法检测性能较好,准确率、召回率和平均精度分别达到88.29%、87.13%和92.88%,比YOLOv5s高出3.28%、3.04%和2.77%,为飞机蒙皮表面缺陷检测提供技术参考。  相似文献   

9.
针对煤矿电力设备缺陷检测精度低的问题,提出了一种基于改进YOLOv5s的煤矿电力设备缺陷检测的方法。该方法主要包括3个方面的改进:首先,提出了一种多分支的坐标注意力模块,增强了模型获得缺陷区域信息的能力;其次,提出了一种特征融合网络模块,通过将主干网络和颈部网络之间非相邻的特征信息进行跨层连接,进一步增强了模型的特征表达及融合能力;最后,提出了一种快速空间金字塔池化平均池化模块,并将其嵌入颈部网络的路径融合网络之间,以提升网络浅层定位信息传递到深层的能力。实验结果表明,改进YOLOv5s模型的mAP@0.5提升了3.1%,F1分值提升了3%,满足煤矿电力设备缺陷的检测需求且具有更高的检测精度。  相似文献   

10.
为了提高交通目标检测的精度和效率,提出一种改进YOLOv5s的交通场景多目标检测方法,在YOLOv5s的主干网络中引入高效的层聚合网络结构来提高模型学习目标特征的能力,引入了通道注意力和空间注意力结合的卷积注意力模块(BAM)机制,进一步提高网络模型的特征提取能力,通过采用α-IoU作为边界框回归损失函数,提高了边界框回归精度。实验结果表明,改进的目标检测模型相较于YOLOv5s原模型在检测精度上提升了2.4%,模型参数量和模型大小分别降低了20.9%和19.1%。实现了在不同时间段准确且高效的检测交通场景的多种目标,保证了实时检测的应用需求。  相似文献   

11.
针对圆网印花图案疵点检测问题,本文采用了一种基于YOLOv5改进算法模型来检测印花图案的疵点。本实验根据实际的情况对YOLOv5模型网络结构进行了更改,首先,对YOLOv5网络的骨干部分进行优化改进,引入了注意力机制模块,对输入图片的通道注意力和空间注意分别提取特征。其次,针对印花疵点目标较小的情况对网络的检测层结构进行了修改。实验结果显示,改进的YOLOv5检测算法精确率提升了14.4%,检测速度提升了7.6fps,达到了43.1fps满足实时检测要求。  相似文献   

12.
针对目前线束端子压接缺陷检测过程中存在检测效率低、误检率高等问题,提出一种基于改进YOLOv7的线束缺陷检测方法。为提高算法的检测精度,在YOLOv7主干网络中添加归一化注意力模块(NAM),加强对检测目标的定位和识别;在颈部构建多尺度的集中特征金字塔网络(CFP),以捕捉不同尺度下的目标信息,加深对图像深层特征的提取;使用SIoU Loss替换CIoU Loss优化训练模型,在加快模型收敛的同时提高预测框的回归精度。实验结果表明,改进后的YOLOv7网络模型准确率达95.8%,召回率达94.5%,均值平均精度达97.6%,与原模型相比分别提高了5.0%、4.8%和3.3%,模型大小90.5 MB,检测时间为48 ms,有效提高了模型的检测精度。最后,使用PyQt5开源框架设计了线束端子压接缺陷检测系统,实现了端子压接缺陷检测的自动化和可视化,提高了缺陷检测效率,可以满足生产企业的需求。  相似文献   

13.
无人机采集输电线路航拍图像由于其特殊性,往往背景复杂多变,检测目标存在尺度不一及部分遮挡等问题容易造成检测过程中误检、漏检。本文从特征融合角度出发,提出基于注意力特征融合YOLOv5模型的输电线路金具检测方法。首先,在主干提取网络中引入了具有自注意力机制的AFF-Transformer模块更好的捕获全局信息和上下文信息,提高主干网络特征提取能力。其次,通过在特征融合过程中使用通道空间注意力避免了关键信息丢失。最后,利用双向加权特征融合机制使得模型更有效的将浅层特征和深层特征进行融合,以上改进有效缓解了金具在密集状态下的误检、漏检等问题。通过在自建输电线路金具数据集上进行实验,结果表明:本文提出的方法在原YOLOv5模型的基础上准确率提升了2.7%,模型召回率提高了1.5%,针对于小目标,以及漏检、误检等问题有了较好的改善。  相似文献   

14.
针对当前行人检测过程中存在速度慢、精确率不高以及高复杂度运算的问题,提出一种兼顾轻量化与检测精确率的卷积神经网络算法(ECG-YOLO)。该算法采用EfficientNetv2与坐标注意力(coordinate attention, CA)模块重新设计主干网络,提升网络的检测速度及精度。设计参数量和计算量更小的GhostConv模块以降低特征通道融合过程中的计算量。加入自适应Gamma校正算法减少复杂场景下光照等因素的影响。改进后的算法在NVIDIA TX2开发板上测试,检测精度达91%以上,较原算法提高了1.7%,参数量和计算量分别为原算法的40.8%和36.3%,具有较好的检测精度与实时性。  相似文献   

15.
针对目前交通标志检测算法存在网络复杂度高、计算量大、边缘端部署难度高。提出一种基于YOLOv5的轻量化交通标志目标检测算法。通过增加注意力机制,使用CBAM和CA融合的方式,强化检测模型抗干扰能力;通过FPGM剪枝,对模型进行了压缩,降低计算量、提高推理速度;通过软硬件融合设计,实现YOLOv5s模型与硬件融合,形成一整套完整的移动智能交通标志目标检测系统;结果表明,增加多种注意力机制后,模型精度提高了2.8%。在极限剪枝的情况下,模型仅有0.54 MB。在Jetson Nano(20 W)的环境下,检测速度达21帧/s,满足实时的交通标志检测。  相似文献   

16.
针对遥感图像中目标排列紧密,背景复杂的问题,设计Transformer和卷积的双向交互模块(CTN)作为网络特征提取结构,使模型能够弱化背景噪声带来的干扰且能更好的捕获全局信息。其次,为了加强特征提取网络在复杂背景下的提取能力,构建了DenseBlock模块和ConvBlock模块,所设计的模块能增强模型在多目标下多尺度学习的能力,相比原网络能提取出更丰富的语义信息。最后对数据集中所有实例分布进行统计分析,其存在的许多小目标容易使原网络存在漏检误检的现象,针对这种情况,在检测头部分额外添加了一个检测头来缓解目标尺度变化带来的负面影响,同时去除对检测效果提升不明显的特征提取分支及检测分支,使用K-means++重新聚类得到最优锚框并分配至裁剪后的3个预测特征层。实验结果表明,改进的网络能有效改善遥感图像的漏检与误检的情况,在目标密集分布的情况下提升YOLOv5s的检测能力,改进的网络能更快收敛,均值平均精度(mean average precision, mAP)相比于原YOLOv5s算法提高了3.1%。  相似文献   

17.
针对目前智能变电站安全智能巡视方法巡视效率低和所耗时间长等问题,在视频监测系统的基础上,提出了一种改进的YOLOv5模型用于智能变电站目标违规行为检测。引入Kmeans++算法解决小目标不敏感问题,引入注意力机制CBAM提高小目标特征占比,引入alpha-IoU损失函数增强对小数据集的鲁棒性。为了验证所提模型的适应性和优越性,对其进行试验分析。结果表明,所提方法与常规方法相比,在多种目标行为检测中具有较高的检测性能,检测准确率为93.80%,检测速度为32.6FPS,满足智能变电站对目标违规行为检测要求。可为智能变电站无人值守提供一定的参考。  相似文献   

18.
针对芯片缺陷检测中,缺陷尺寸跨度大、特征相似、小目标难识别、漏检等问题,本文提出基于YOLOv5改进的缺陷检测方法。针对小目标缺陷检测中出现的漏检、误检等问题,提出新增小目标特征检测器(small target feature detector,S-Detector),提升模型对小目标缺陷的学习能力;针对缺陷尺寸跨度大、特征相似等问题,提出具有高效聚焦学习能力的特征金字塔结构(efficient attention feature pyramid networks,EA-FPNs),提升模型对不同尺寸缺陷的检测能力;针对预测阶段冗余框较多导致时间开销大的问题,提出基于面积的边界框融合算法(bounding box fusion algorithm,BFA),减少冗余框。实验结果表明,本文方法相较于改进前,检测精确度提升1.2%,小目标缺陷精确度提升1.6%;采用BFA消除冗余框的同时,平均检测时长为26.8μs/张,较使用BFA前减少了5.2μs。本文所提方法具有良好性能,能够提升检测效率。  相似文献   

19.
为了解决现有目标检测系统在电力现场识别中存在的环境复杂、检测物体形状方差过大以及视觉特征辨识性不佳等问题,提出了一种适用于电力现场穿戴识别的目标检测模型。首先,通过在YOLOv5特征提取网络中嵌入非对称卷积模块,从而得到更加具备辨识性及鲁棒性的视觉特征。其次,为了能够在全局背景噪声的影响下自适应地关注与检测物体特征相关性更强的区域,采用全局注意力机制进行上下文信息的建模,改进了视觉信息处理的效率与准确性。最后,通过对比现有的目标检测算法,证明了所提针对YOLOv5改进算法的有效性和优越性。同时,通过消融实验证明了所改进的模块在目标检测模型中的有效性。  相似文献   

20.
针对变电站建筑物屋面工程缺陷检测效率较低及检测精确度较差的问题,提出一种基于改进YOLOv5(you only look once version 5)的变电站屋面工程缺陷检测算法。首先,对图像进行预处理,减轻外界噪声给检测效果带来的影响。其次,在网络骨干中引入改进自注意力机制,提高计算效率,用多头自注意力层替换YOLOv5网络骨干末端的卷积层,使网络能够更好地捕捉全局关联信息。最后,在检测部分增加跨层加权级联结构,将浅层中缺陷的边缘信息、轮廓信息融入到深层特征中,提高网络对缺陷边界回归的精确度。实验结果表明,本文提出的改进YOLOv5变电站屋面工程缺陷检测算法对保温层、隔离层、隔汽层、防水层和找平层这5类工序的缺陷检测的平均精度均值达到了93.2%,每秒帧数达到163.5帧/s,解决了实际工程环境中出现的变电站屋面工程缺陷分布不均衡和目标多尺度变化的问题,对比其他同类算法拥有更好的精确度和实时性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号