首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ensuring that a five-axis machine tool is operating within tolerance is critical. However, there are few simple and fast methods to identify whether the machine is in a “usable” condition. This paper investigates the use of the double ball bar (DBB) to identify and characterise the position independent geometric errors (PIGEs) in rotary axes of a five-axis machine tool by establishing new testing paths. The proposed method consists of four tests for two rotary axes; the A-axis tests with and without an extension bar and the C-axis tests with and without an extension bar. For the tests without an extension bar, position errors embedded in the A- and C-axes are measured first. Then these position errors can be used in the tests with an extension bar, to obtain the orientation errors in the A- and C-axes based on the given geometric model. All tests are performed with only one axis moving, thus simplifying the error analysis. The proposed method is implemented on a Hermle C600U five-axis machine tool to validate the approach. The results of the DBB tests show that the new method is a good approach to obtaining the geometric errors in rotary axes, thus can be applied to practical use in assembling processes, maintenance and regular checking of multi-axis CNC machine tools.  相似文献   

2.
The present paper describes the enhancement of kinematic accuracy of five-axis machining centers with a tilting rotary table. Geometric deviations inherent to the five-axis machine are calibrated through the actual trajectories measured by two different settings of a ball bar in simultaneous three axis motion. Measurement using a cylindrical coordinate system is superior to measurement using a Cartesian coordinate system from the viewpoint of the number of measurements. In order to verify the effectiveness of the calibration method, the inherent geometric deviations measured on the cylindrical coordinate system were corrected through the post processing of NC data for cutting the cone-frustum.The relative displacement between the tool center point and the workpiece was detected by the ball bar. Based on the experimental results, it is confirmed that the radius, center position, and roundness of the three-dimensional circular trajectory are improved when the inherent geometric deviations are corrected.  相似文献   

3.
A method is proposed in this paper to assess the axis motion errors of a trunnion-type A-axis using the magnetic double ball bar (DBB) as the measuring instrument. The proposed method consists of five DBB tests with a single setup for all of the tests and the exclusive motion of the trunnion axis during data acquisition. The single setup helps to reduce non-productive time by limiting the intervention of the operator within the machine workspace whereas the exclusive trunnion axis motion prevents the data from being contaminated by other axes motion errors within each test. Simulations show that setup errors cause eccentricities and radius changes of the ball bar data when viewed on a polar plot. Finally, the proposed method is applied to a VL30 Mitsui-Seiki vertical machine tool to identify its trunnion axis motion errors. The results show the effectiveness of the proposed method as well as its ease of use and the short time required.  相似文献   

4.
This paper proposes a new ball bar test method for the inspection of dynamic errors of rotary axes in five-axis CNC machine tools. The test circle is defined in a workpiece coordinate system and the ball bar test is performed by simultaneously driving of linear–rotary axis couple. The effects of the center position and the radius on the setting values, rotational range and measurement sensitivity of the rotary axis were investigated. The proposed ball bar test is performed in two steps: the circular positioning and the circular tracking with a continuous feed. Axial dynamic errors are obtained by subtracting the measured tracking errors from the positioning errors. A ball bar test system (BBTS) was developed to plan the tool path and the tool orientation, to communicate with the five-axis CNC controller and to process the measured data. Error patterns were simulated regarding the gain mismatch, backlash and tracking direction to help a fast diagnosis of the error sources. Simulations and experimental results prove the effectiveness of the new test method.  相似文献   

5.
The present paper describes the effect of the half apex angle of the cone-frustum on the motion trajectory under simultaneous five-axis motion and the effect of the sensitive direction of the ball bar when the motion trajectory is measured along the three-dimensional circular conical path. In the present paper, simulation of the measurement by means of a ball bar instrument is mainly conducted using a motion simulator developed previously. In particular, a precise mathematical model was developed to express the pitch errors of the axes of rotation of the five-axis machining center having a tilting rotary table driven by worm gears. In the experiment and simulation, primarily the center position and half apex angle of the cone-frustum were varied. In addition, two sensitive directions of the ball bar were investigated. The motion simulator incorporating the pitch error model can express the detailed trajectories obtained by the ball bar, even if the half apex angle and center position of the cone-frustum and the sensitive direction of the ball bar were changed. Then, the influence of the frictional force of the linear axes of motion, and the backlash and pitch error of the axes of rotation on the circular trajectories were analyzed. In particular, for the case of a half apex angle of 45°, the trajectory due to the errors of the axis of rotation is strongly affected by the sensitive direction of the ball bar.  相似文献   

6.
This paper presents an algorithm for identifying particular deviations such as angular deviations around linear axes relating to rotary axes in 5-axis machining centers. In this study, three kinds of simultaneous three-axis control motions are designed for each rotary axis to identify the deviations. In the measurement, two translational axes and one rotary axis are simultaneously controlled keeping the distance between a tool and a worktable constant. Telescoping ball bar is an effective instrument for measuring the relative displacement to the reference length in the work volume because its attitude is freely changed. In these three-axis control motions, the sensitive direction of the ball bar is kept constant. In order to determine the deviations, we derive eight equations from the relationship between the eccentricities obtained from the measured circular trajectories and the approximations derived from the mathematical model based on the simulation. In the simulation, a mathematical model considering the particular deviations is developed and then the characteristic diagrams are prepared for every deviation and every three-axis control motion. Based on the results, we propose a procedure for identifying the particular deviations in 5-axis machining centers and its procedure has been applied to identify the deviations actually. From both the simulation and the experiment, it has been confirmed that the proposed method gives precision results and is able to apply to the measurement of 5-axis machining center which is a tilting rotary table type.  相似文献   

7.
The geometric errors of rotary axes are the fundamental errors of a five-axis machine tool. They directly affect the machining accuracy, and require periodical measurement, identification and compensation. In this paper, a precise calibration and compensation method for the geometric errors of rotary axes on a five-axis machine tool is proposed. The automated measurement is realized by using an on-the-machine touch-trigger technology and an artifact. A calibration algorithm is proposed to calibrate geometric errors of rotary axes based on the relative displacement of the measured reference point. The geometric errors are individually separated and the coupling effect of the geometric errors of two rotary axes can be avoided. The geometry error of the artifact as well as its setup error has little influence on geometric error calibration results. Then a geometric error compensation algorithm is developed by modifying the numeric control (NC) source file. All the geometric errors of the rotary errors are compensated to improve the machining accuracy. The algorithm can be conveniently integrated into the post process. At last, an experiment on a five-axis machine tool with table A-axis and head B-axis structure validates the feasibility of the proposed method.  相似文献   

8.
Inverse kinematics of five-axis machines near singular configurations   总被引:9,自引:0,他引:9  
In five-axis milling, singular configurations of the machine axes may cause tool path errors or collisions between the tool and parts of the milling machine. This paper presents an algorithm for calculating the inverse kinematics of five-axis machines close to singular configurations. The algorithm modifies the exact inverse kinematics in order to give robustness to singularities at the expense of a small tool orientation deviation. The kinematics of a five-axis machine with non-orthogonal rotary axes is analyzed. The forward kinematics is developed, and a closed form solution of the inverse kinematics is presented. The kinematics and the singularity algorithm are implemented in a postprocessor, and machining tests are conducted to verify the algorithms.  相似文献   

9.
This paper proposes an efficient and automated scheme to calibrate error motions of rotary axes on a five-axis machining center by using the R-test. During a five-axis measurement cycle, the R-test probing system measures the three-dimensional displacement of a sphere attached to the spindle in relative to the machine table. Location errors, defined in ISO 230-7, of rotary axes are the most fundamental error factors in the five-axis kinematics. A larger class of error motions can be modeled as geometric errors that vary depending on the angular position of a rotary axis. The objective of this paper is to present an algorithm to identify not only location errors, but also such position-dependent geometric errors, or “error map,” of rotary axes. Its experimental demonstration is presented.  相似文献   

10.
In this study, position-independent geometric errors, including offset errors and squareness errors of rotary axes of a five-axis machine tool are measured using a double ball-bar and are verified through compensation. In addition, standard uncertainties of measurement results are calculated to establish their confidence intervals. This requires two measurement paths for each rotary axis, which are involving control of single rotary axis during measurement. So, the measurement paths simplify the measurement process, and reduce measurement cost including less operator effort and measurement time. Set-up errors, which are inevitable during the installation of the balls, are modeled as constants. Their effects on the measurement results are investigated to improve the accuracy of the measurement result. A novel fixture consisting of flexure hinges and two pairs of bolts is used to minimize set-up error by adjusting the ball's position located at the tool nose. Simulation is performed to check the validation of measurement and to analyze the standard uncertainties of the measurement results. Finally, the position-independent geometric errors of the five-axis machine tool (involving a rotary axis and a trunnion axis) are measured using proposed method.  相似文献   

11.
The error model of CNC machine tool describes the relationship between the individual error source and its effects on the overall position errors. A practical problem in applying this technique to five-axis machine tool is that the predicted position errors cannot be justified. This paper, the first in a set of two, presents a new measurement device, the probe–ball, which can be used to measure the overall position errors of five-axis machine tools directly. To perform the accuracy test, a three-degree-of-freedom (3D) measuring probe is installed in the main spindle and a base plate is fixed on the turntable. The kinematic chain of the five-axis machine tool is then closed through connecting the central ball on the base plate with the extension bar of the probe. To generate simultaneous axes motion under the condition of closed kinematic chain, the central ball is defined as origin of the workpiece coordinate frame and the probe is driven along a path on a spherical test surface with the central ball as center. The overall position errors are measured with the 3D measuring probe. A theoretical model is derived to explain the nature of the probe–ball error measurements.  相似文献   

12.
This paper proposes a single setup identification method of 12 component errors of rotary axes on five-axis machine tools by using a touch trigger probe and an artefact. At first, a basic idea of pre-layout of target points combined with the shift of measuring reference is proposed. Influence of setup errors of touch trigger probe and artefact on measuring results is identified quantitatively and included in error models. A single setup measuring method is then designed to identify 12 component errors of rotary axes on five-axis machine tools with a tilting head and a rotary table. The expansion of this basic idea on five-axis machine tools with other configurations is also provided. Validation and uncertainty analysis of the identified values are also provided. The measuring accuracy is guaranteed by the complete error model while the measuring efficiency is improved significantly by the single setup measuring method.  相似文献   

13.
5轴数控机床在加工奇异区域时,由于旋转轴的剧烈变化导致产生较大的非线性误差,加工质量下降。针对这个问题,以A-C双转台机床为例,分析机床产生奇异现象的原因,提出检测5轴加工奇异区域的方案,通过对奇异区域相邻刀轴矢量之间进行插值处理,减小相邻刀轴的角度变化,使相邻刀位点之间的最大非线性误差小于机床允许的最大非线性误差。用MATLAB对比插值前后5轴机床转角和非线性误差的变化,证明该方法可以降低C轴的过大转角同时减小非线性误差。  相似文献   

14.
Five-axis machine tools can be programmed to keep a constant nominal tool end point position while exercising all five axes simultaneously. This kinematic capability allows the use of a 3D proximity sensing head mounted at the spindle to track the position changes of a precision steel ball mounted on the machine table effectively measuring the 3D Cartesian volumetric errors of the machine. The new sensing head uses capacitive sensors to gather data on the fly during a synchronized five-axis motion which lasts less than 2 min. Because the measured volumetric errors are strongly affected by the link geometric errors, they can be used to estimate the link errors through an iterative procedure based on an identification Jacobian matrix. The paper presents the new sensor, the identification model and the experimental validation. The approach allows all eight link errors i.e. the three squarenesses of linear axes and the four orientations and center lines offset of the rotary axes to be estimated with the proposed single setup test. The estimation approach is performed on a horizontal five-axis machine tool. Then, using the estimated link errors, the volumetric errors are predicted for axes combinations different from those used for the identification process. The estimated machine model correctly predicts 52–84% of the volumetric errors for the tested trajectories.  相似文献   

15.
The linear and rotary axes of a five-axis machine tool are driven simultaneously to generate a specified tool position and orientation in workpiece coordinates. It is crucial that these servo-controlled axes are of balanced dynamics to achieve high tracking accuracy. In this paper, ballbar circular tests for all possible combinations of linear and rotary axes of a five-axis machine tool are investigated and total ballbar dynamic tests are proposed. Through the relational arrangement of the test sequence, the total ballbar dynamic tests can be employed to identify dynamic differences between linear and rotary axes. More importantly, the velocity gains of the position control loops of all servo-controlled linear and rotary axes can be tuned synchronously to eliminate gain mismatch errors. Experimental results have proved the effectiveness of the new methods.  相似文献   

16.
A new compensation method for geometry errors of five-axis machine tools   总被引:4,自引:1,他引:4  
The present study aims to establish a new compensation method for geometry errors of five-axis machine tools. In the kinematic coordinate translation of five-axis machine tools, the tool orientation is determined by the motion position of machine rotation axes, whereas the tool tip position is determined by both machine linear axes and rotation axes together. Furthermore, as a nonlinear relationship exists between the workpiece coordinates and the machine axes coordinates, errors in the workpiece coordinate system are not directly related to those of the machine axes coordinate system. Consequently, the present study develops a new compensation method, the decouple method, for geometry errors of five-axis machine tools. The method proposed is based on a model that considers the tool orientation error only related to motion of machine rotation axes, and it further calculates the error compensations for rotation axes and linear axes separately, in contrast to the conventional method of calculating them simultaneously, i.e. determines the compensation of machine rotation axes first, and then calculates the compensation associated with the machine linear axes. Finally, the compensation mechanism is applied in the postprocessor of a CAM system and the effectiveness of error compensation is evaluated in real machine cutting using compensated NC code. In comparison with previous methods, the present compensation method has attributes of being simple, straightforward and without any singularity point in the model. The results indicate that the accuracy of positioning was improved by a factor of 8–10. Hence, the new compensation mechanism proposed in this study can effectively compensate geometry errors of five-axis machine tools.  相似文献   

17.
以主轴头两摆的五轴联动数控机床为研究对象,对转动轴与平动轴联动加工不同空间位置圆弧时的轮廓误差进行了分析。采用D-H(Denavit-Hartenberg)法对按不同圆弧路径加工时各轴的进给指令计算公式进行了推导,并将指令输入到动态仿真工具Simulink构建的进给系统仿真模型中,比较刀具理想位置与实际位置的偏差,从而得到轮廓误差曲线。通过仿真曲线分析了轮廓误差的分布特性,得到了各参数对轮廓误差影响的对应关系,利用这种关系检测机床,达到提高机床性能的目的,同时为机床的调整与维修提供一种便捷手段。  相似文献   

18.
Double ballbar test for the rotary axes of five-axis CNC machine tools   总被引:2,自引:0,他引:2  
In this paper a new method that uses the double ballbar to inspect motion errors of the rotary axes of five-axis CNC machine tools is presented. The new method uses a particular circular test path that only causes the two rotary axes to move simultaneously and keeps the other three linear axes stationary. Therefore, only motion errors of the two rotary axes will be measured during the ballbar test. The theoretical trace patterns of various error origins, including servo mismatch and backlash, are established. Consequently, the error origins in the rotary block can be diagnosed by examining whether similar patterns appear in the motion error trace. The method developed was verified by practical tests, and the servo mismatch of the rotary axes was successfully detected.  相似文献   

19.
This paper proposes an on-machine measurement (OMM) of all location errors on five-axis machine tools. Five machining patterns are successively performed on a cubic workpiece. The basic idea is to use a set of large rotations of rotary axes to prolong the moving distance of linear axes when squareness errors of linear axes are identified. Then, a set of small rotations of rotary axes are used to decouple the squareness errors of linear and rotary axes. Based on this, the long and deep slots in previous machining tests are improved to be a set of short and shallow ones. These miniaturized slots reduce the material removal and minimize the influence of cutting force and thermal deformation on the measuring results. Then the cutting tool is substituted by a laser displacement sensor (LDS) to measure the mismatch between the finished surfaces of the corresponding slots. All the measured surfaces are located on the bottom of the slots to fit the LDS characteristic of one dimensional measurement. Three gestures of the rotary table and tilting head are used to implement the single-setup OMM and the influence of location errors on the measuring results is compensated. Validation of the identified values is also provided by a set of simple tests using different measuring instruments. The efficiency and accuracy of location errors measurement method on five-axis machine tools are improved.  相似文献   

20.
This paper proposes a machining test to parameterize error motions, or position-dependent geometric errors, of rotary axes in a five-axis machine tool. At the given set of angular positions of rotary axes, a square-shaped step is machined by a straight end mill. By measuring geometric errors of the finished test piece, the position and the orientation of rotary axis average lines (location errors), as well as position-dependent geometric errors of rotary axes, can be numerically identified based on the machine׳s kinematic model. Furthermore, by consequently performing the proposed machining test, one can quantitatively observe how error motions of rotary axes change due to thermal deformation induced mainly by spindle rotation. Experimental demonstration is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号