首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the application of adaptive neuro-fuzzy inference system (ANFIS) model for estimation of vigilance level by using electroencephalogram (EEG) signals recorded during transition from wakefulness to sleep. The developed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. This study comprises of three stages. In the first stage, three types of EEG signals (alert signal, drowsy signal and sleep signal) were obtained from 30 healthy subjects. In the second stage, for feature extraction, obtained EEG signals were separated to its sub-bands using discrete wavelet transform (DWT). Then, entropy of each sub-band was calculated using Shannon entropy algorithm. In the third stage, the ANFIS was trained with the back-propagation gradient descent method in combination with least squares method. The extracted features of three types of EEG signals were used as input patterns of the three ANFIS classifiers. In order to improve estimation accuracy, the fourth ANFIS classifier (combining ANFIS) was trained using the outputs of the three ANFIS classifiers as input data. The performance of the ANFIS model was tested using the EEG data obtained from 12 healthy subjects that have not been used for the training. The results confirmed that the developed ANFIS classifier has potential for estimation of vigilance level by using EEG signals.  相似文献   

2.
Motor-imagery tasks generate event related synchronization and de-synchronization in certain subject-specific frequency ranges of the subject’s ElectroEncephaloGraphy (EEG) signals. The selection of frequency ranges for each subject is important for obtaining better classification accuracy of motor-imagery based Brain Computer Interface (BCI). Further, the spatial filters extracted corresponding to the selected spectral ranges also influence the classification accuracy. In this paper, a subject-specific spatio-spectral filter selection approach using a cognitive fuzzy inference system for classification of the motor-imagery tasks in a two step approach is presented. The cognitive fuzzy inference system (CFIS) employs an evolving interval type-2 system to classify the non-stationary features. The classifier employs a meta-cognitive sequential algorithm to determine both the structure and parameters of the CFIS. In the first step, the CFIS classifier is used to find the desired spectral filters by eliminating those frequency bands that do not affect the classification performance. In the second step, CFIS is used to eliminate those spatial filters which do not affect the performance. The performance of CFIS based spatio-spectral scheme has been evaluated using two publicly available BCI competition data sets and compared with other existing algorithms like FBCSP, DCSP and BSSFO. The results indicate that the proposed approach outperforms the CSP method by approximately 15–18% and other algorithms like FBCSP, DCSP by 8–10%. Compared to a recently proposed algorithm BSSFO, it achieves an improvement of 2%, but is simpler in comparison to BSSFO. The main impact of the work is its ability to handle non-stationarity using interval type-2 sets and provide good classification performance. In general, the proposed CFIS algorithm can be applied in the field of expert and intelligent systems where it is necessary to deal with non-stationary signals.  相似文献   

3.
Rolling-element bearings are critical components of rotating machinery. It is important to accurately predict in real-time the health condition of bearings so that maintenance practices can be scheduled to avoid malfunctions or even catastrophic failures. In this paper, an Interval Type-2 Fuzzy Neural Network (IT2FNN) is proposed to perform multi-step-ahead condition prediction of faulty bearings. Since the IT2FNN defines an interval type-2 fuzzy logic system in the form of a multi-layer neural network, it can integrate the merits of each, such as fuzzy reasoning to handle uncertainties and neural networks to learn from data. The interval type-2 fuzzy linguistic process in the IT2FNN enables the system to handle prediction uncertainties, since the type-2 fuzzy sets are such sets whose membership grades are type-1 fuzzy sets that can be used in failure prediction due to the difficult determination of an exact membership function for a fuzzy set. Noisy data of faulty bearings are used to validate the proposed predictor, whose performance is compared with that of a prevalent type-1 condition predictor called Adaptive Neuro-Fuzzy Inference System (ANFIS). The results show that better prediction accuracy can be achieved via the IT2FNN.  相似文献   

4.
This paper presents a new method for fault detection (FD) based on interval type-2 fuzzy sets. The main idea is based on a confident span using interval type-2 fuzzy systems. An estimate for upper and lower bounds of output has been taken using the designing of an optimal fuzzy system through clustering. Finally the method has been tested in two non-linear systems, a two-tank with a fluid flow and pH neutralisation process, and it is compared with a well-known method named ANFIS. Furthermore, the mathematical model and the results of simulations prove the effectiveness, usefulness and applications of our new method.  相似文献   

5.

Epilepsy is a class of chronic neurological disorders characterized by transient and unexpected electrical disturbances of the brain. The automated analysis of the electroencephalogram (EEG) signal can be instrumental for the proper diagnosis of this mental condition. This work presents a systematic assessment of the performance of different variants of the binary magnetic optimization algorithm (BMOA), two of which are introduced here, while serving as feature selectors for epileptic EEG signal identification. In this context, the optimum-path forest classifier was adopted as a classification model, whereas different wavelet families were considered for EEG feature extraction. In order to compare the performance of the improved BMOA variants against the traditional one, as well as other metaheuristic techniques, namely particle swarm optimization, binary bat algorithm, and genetic algorithm, we employed a well-known EEG benchmark dataset composed of five classes of EEG signals (two of which comprising normal patients with eyes open or closed, and the remaining comprising ill patients with different levels of epilepsy). Overall, the results evidenced the robustness of the proposed BMOA and its variants.

  相似文献   

6.
Abstract: A new approach based on an adaptive neuro‐fuzzy inference system (ANFIS) is presented for diagnosis of diabetes diseases. The Pima Indians diabetes data set contains records of patients with known diagnosis. The ANFIS classifiers learn how to differentiate a new case in the domain by being given a training set of such records. The ANFIS classifier is used to detect diabetes diseases when eight features defining diabetes indications are used as inputs. The proposed ANFIS model combines neural network adaptive capabilities and the fuzzy logic qualitative approach. The conclusions concerning the impacts of features on the diagnosis of diabetes disease are obtained through analysis of the ANFIS. The performance of the ANFIS model is evaluated in terms of training performances and classification accuracies and the results confirm that the proposed ANFIS model has potential in detecting diabetes diseases.  相似文献   

7.
A novel direct adaptive interval type-2 fuzzy neural network (FNN) controller in which linguistic fuzzy control rules can be directly incorporated into the controller is developed to synchronize chaotic systems with training data corrupted by noise or rule uncertainties involving external disturbances, in this paper. By incorporating direct adaptive interval type-2 FNN control scheme and sliding mode approach, two non-identical chaotic systems can be synchronized based on Lyapunov stability criterion. Moreover, the chattering phenomena of the control efforts can be reduced and the external disturbance on the synchronization error can be attenuated. The stability of the proposed overall adaptive control scheme will be guaranteed in the sense that all the states and signals are uniformly bounded. From the simulation example, to synchronize two non-identical Chua’s chaotic circuits, it has been shown that type-2 FNN controllers have the potential to overcome the limitations of tpe-1 FNN controllers when training data is corrupted by high levels of uncertainty.  相似文献   

8.
This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for automatic detection of electroencephalographic changes. Decision making was performed in two stages: feature extraction by computation of Lyapunov exponents and classification by the ANFIS trained with the backpropagation gradient descent method in combination with the least squares method. Five types of electroencephalogram (EEG) signals were classified by five ANFIS classifiers. To improve diagnostic accuracy, the sixth ANFIS classifier (combining ANFIS) was trained using the outputs of the five ANFIS classifiers as input data. The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. Some conclusions concerning the saliency of features on classification of the EEG signals were obtained through analysis of the ANFIS. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in classifying the EEG signals.  相似文献   

9.
区间二型模糊控制器在处理不确定性方面优于传统的模糊控制器,但带来的一个问题就是区间二型模糊控制器需要降阶过程。常用的KM等迭代式降阶算法效率低下,难以用于实时性较高的场合。本文利用直接降阶算法和动态解模糊化算法,提出了一类区间二型模糊PI控制器设计算法。该算法在降阶过程中考虑偏差和偏差变化量对控制器输出的影响,避免了KM等迭代式降阶过程。通过二阶迟延对象以及一个非线性对象的仿真实验表明,本文算法能够有效降低系统超调,降低系统的稳态时间,控制器在设定值附近的输出更为平滑。  相似文献   

10.
In this paper, a fuzzy expert system based on adaptive neuro‐fuzzy inference system (ANFIS) is introduced to assess the mortality after coronary bypass surgery. In preprocessing phase, the attributes were reduced using a univariant analysis in order to make the classifier system more effective. Prognostic factors with a p‐value of less than 0.05 in chi‐square or t‐student analysis were given to inputs ANFIS classifier. The correct diagnosis performance of the proposed fuzzy system was calculated in 824 samples. To demonstrate the usefulness of the proposed system, the study compared the performance of fuzzy system based on ANFIS method through the binary logistic regression with the same attributes. The experimental results showed that the fuzzy model (accuracy: 96.4%; sensitivity: 66.6%; specificity: 97.2%; and area under receiver operating characteristic curve: 0.82) consistently outperformed the logistic regression (accuracy: 89.4%; sensitivity: 47.6%; specificity: 89.4%; and area under receiver operating characteristic curve: 0.62). The obtained classification accuracy of fuzzy expert system was very promising with regard to the traditional statistical methods to predict mortality after coronary bypass surgery such as binary logistic regression model.  相似文献   

11.
In this paper, an intelligent diagnosis system based on principle component analysis (PCA) and adaptive network based on fuzzy inference system (ANFIS) for the heart valve disease is introduced. This intelligent system deals with combination of the feature extraction and classification from measured Doppler signal waveforms at the heart valve using the Doppler ultrasound (DHS). Here, the wavelet entropy is used as features. This intelligent system has three phases. In pre-processing phase, the data acquisition and pre-processing for DHS signals are performed. In feature extraction phase, the feature vector is extracted by calculating the 12 wavelet entropy values for per DHS signal and dimension of Doppler signal dataset, which are 12 features, is reduced to 6 features using PCA. In classification phase, these reduced wavelet entropy features are given to inputs ANFIS classifier. The correct diagnosis performance of the PCA–ANFIS intelligent system is calculated in 215 samples. The classification accuracy of this PCA–ANFIS intelligent system was 96% for normal subjects and 93.1% for abnormal subjects.  相似文献   

12.
识别癫痫脑电信号的关键在于获取有效的特征和构建可解释的分类器.为此,提出一种基于增强深度特征的TSK模糊分类器(ED-TSK-FC).首先,ED-TSK-FC使用一维卷积神经网络(1D-CNN)自动获取癫痫脑电信号的深度特征与潜在类别信息,并将深度特征和潜在类别信息合并为增强深度特征;其次,将增强深度特征作为ED-TSK-FC模糊规则前件与后件部分的训练变量,保证原始输入的深度特征及其潜在意义都出现在模糊规则中,进而对增强深度特征作出良好的解释;然后,采用岭回归极限学习算法对模糊规则的后件参数进行快速求解,在不显著降低分类准确度的情况下,ED-TSK-FC的廉价训练方法可以缩短模型的训练时间;最后,在Bonn癫痫数据集上,分别从分类性能、学习效率和可解释性3个方面,验证ED-TSK-FC的优越性.  相似文献   

13.
Epileptic seizures are manifestations of epilepsy. Careful analyses of the electroencephalograph (EEG) records can provide valuable insight and improved understanding of the mechanisms causing epileptic disorders. The detection of epileptiform discharges in the EEG is an important component in the diagnosis of epilepsy. As EEG signals are non-stationary, the conventional method of frequency analysis is not highly successful in diagnostic classification. This paper deals with a novel method of analysis of EEG signals using wavelet transform and classification using artificial neural network (ANN) and logistic regression (LR). Wavelet transform is particularly effective for representing various aspects of non-stationary signals such as trends, discontinuities and repeated patterns where other signal processing approaches fail or are not as effective. Through wavelet decomposition of the EEG records, transient features are accurately captured and localized in both time and frequency context. In epileptic seizure classification we used lifting-based discrete wavelet transform (LBDWT) as a preprocessing method to increase the computational speed. The proposed algorithm reduces the computational load of those algorithms that were based on classical wavelet transform (CWT). In this study, we introduce two fundamentally different approaches for designing classification models (classifiers) the traditional statistical method based on logistic regression and the emerging computationally powerful techniques based on ANN. Logistic regression as well as multilayer perceptron neural network (MLPNN) based classifiers were developed and compared in relation to their accuracy in classification of EEG signals. In these methods we used LBDWT coefficients of EEG signals as an input to classification system with two discrete outputs: epileptic seizure or non-epileptic seizure. By identifying features in the signal we want to provide an automatic system that will support a physician in the diagnosing process. By applying LBDWT in connection with MLPNN, we obtained novel and reliable classifier architecture. The comparisons between the developed classifiers were primarily based on analysis of the receiver operating characteristic (ROC) curves as well as a number of scalar performance measures pertaining to the classification. The MLPNN based classifier outperformed the LR based counterpart. Within the same group, the MLPNN based classifier was more accurate than the LR based classifier.  相似文献   

14.
This paper presents a novel learning methodology based on a hybrid algorithm for interval type-2 fuzzy logic systems. Since only the back-propagation method has been proposed in the literature for the tuning of both the antecedent and the consequent parameters of type-2 fuzzy logic systems, a hybrid learning algorithm has been developed. The hybrid method uses a recursive orthogonal least-squares method for tuning the consequent parameters and the back-propagation method for tuning the antecedent parameters. Systems were tested for three types of inputs: (a) interval singleton, (b) interval type-1 non-singleton, and (c) interval type-2 non-singleton. Experiments were carried out on the application of hybrid interval type-2 fuzzy logic systems for prediction of the scale breaker entry temperature in a real hot strip mill for three different types of coil. The results proved the feasibility of the systems developed here for scale breaker entry temperature prediction. Comparison with type-1 fuzzy logic systems shows that hybrid learning interval type-2 fuzzy logic systems provide improved performance under the conditions tested.  相似文献   

15.
This paper presents an indirect approach to interval type-2 fuzzy logic system modeling to forecaste the level of air pollutants. The type-2 fuzzy logic system permits us to model the uncertainties among rules and the parameters related to data analysis. In this paper, we propose an indirect method to create an interval type-2 fuzzy logic system from a historical data, where Footprint of Uncertainties of fuzzy sets are extracted by implementation of an interval type-2 FCM algorithm and based on an upper and lower value for the level of fuzziness m in FCM. Finally, the proposed model is applied for prediction of carbon monoxide concentration in Tehran air pollution. It is shown that the proposed type-2 fuzzy logic system is superior in comparison to type-1 fuzzy logic systems in terms of two performance indices.  相似文献   

16.
脑电检测是癫痫疾病诊断的重要手段,但基于脑电信号特征的人工标记方法,对癫痫发作状态识别的准确度较低。将脑功能网络与TSK模糊系统相结合,提出一种癫痫脑电信号识别的新方法。通过分析多通道脑电信号之间的同步性,构建癫痫患者的脑功能网络,采用复杂网络方法提取特征参数;以脑网络参数为输入特征建立TSK模糊系统模型,通过监督式学习训练分类器,用于识别癫痫发作期的脑电波形。实验结果证明了该方法的有效性,模糊分类器对癫痫发作状态识别的准确度达到98.36%,99.48%敏感度和97.24%特异度。该方法将复杂网络与机器学习算法相融合,为通过脑电检测识别癫痫疾病状态提供了新方法,具有重要的应用价值。  相似文献   

17.
The interval type-2 Takagi–Sugeno fuzzy systems have been proposed to handle nonlinear systems subject to parameter uncertainties. In this paper, a new type of state feedback controller, namely, interval type-2 regional switching fuzzy controller, is proposed to conceive less-conservative stabilisation conditions, which is switched by basing on the values of system states. To further reduce the conservativeness in the stability analysis, the information of lower and upper membership functions is also considered. Stability conditions for the interval type-2 fuzzy closed-loop systems are presented in the form of linear matrix inequalities (LMIs). Simulation examples are provided to illustrate the effectiveness of the proposed method.  相似文献   

18.
Automatic segmentation of non-stationary signals such as electroencephalogram (EEG), electrocardiogram (ECG) and brightness of galactic objects has many applications. In this paper an improved segmentation method based on fractal dimension (FD) and evolutionary algorithms (EAs) for non-stationary signals is proposed. After using Kalman filter (KF) to reduce existing noises, FD which can detect the changes in both the amplitude and frequency of the signal is applied to reveal segments of the signal. In order to select two acceptable parameters of FD, in this paper two authoritative EAs, namely, genetic algorithm (GA) and imperialist competitive algorithm (ICA) are used. The proposed approach is applied to synthetic multi-component signals, real EEG data, and brightness changes of galactic objects. The proposed methods are compared with some well-known existing algorithms such as improved nonlinear energy operator (INLEO), Varri?s and wavelet generalized likelihood ratio (WGLR) methods. The simulation results demonstrate that segmentation by using KF, FD, and EAs have greater accuracy which proves the significance of this algorithm.  相似文献   

19.
在癫痫脑电信号分类检测中,传统机器学习方法分类效果不理想,深度学习模型虽然具有较好的特征学习优势,但其“黑盒”学习方式不具备可解释性,不能很好地应用于临床辅助诊断;并且,现有的多视角深度TSK模糊系统难以有效表征各视角特征之间的相关性.针对以上问题,提出一种基于视角-规则的深度Takagi-SugenoKang (TSK)模糊分类器(view-to-rule Takagi-Sugeno-Kang fuzzy classifier, VR-TSK-FC),并将其应用于多元癫痫脑电信号检测中.该算法在原始数据上构建前件规则以保证模型的可解释性,利用一维卷积神经网络(1-dimensional convolutional neural network, 1D-CNN)从多角度抓取多元脑电信号深度特征.每个模糊规则的后件部分分别采用一个视角的脑电信号深度特征作为其后件变量,视角-规则的学习方式提高了VR-TSK-FC表征能力.在Bonn和CHB-MIT数据集上, VR-TSK-FC算法模糊逻辑推理过程保证可解释的基础上达到了较好分类效果.  相似文献   

20.
一型模糊集可以建模单个用户的语义概念中的不确定性, 即个体内不确定性. 一型模糊系统在控制和机器学习中得到了大量成功应用. 区间二型模糊集能同时建模个体内不确定性和个体间不确定性, 因而在很多应用中显示了比一型模糊系统更好的性能, 是近年来的研究热点. 本文首先介绍了区间二型模糊集的重要概念和理论研究进展, 总结了其在决策和机器学习中的成功应用, 然后介绍了区间二型模糊系统的基本操作和理论研究进展, 并回顾了其在控制和机器学习中的典型应用. 最后, 对区间二型模糊集和模糊系统未来的研究方向进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号