共查询到20条相似文献,搜索用时 15 毫秒
1.
Accuracy improvement of miniaturized machine tool: Geometric error modeling and compensation 总被引:5,自引:1,他引:5
Jae Ha Lee Yu Liu Seung-Han Yang 《International Journal of Machine Tools and Manufacture》2006,46(12-13):1508-1516
A novel capacitance–sensor based multi-degree-of-freedom (DOF) measurement system has been developed for measuring geometric errors of a miniaturized machine tool (mMT) overcoming the size limitations. In the present work five geometric error components of a three-axis mMT are measured simultaneously along each axis and the squareness errors are determined by the slopes of straightness error profiles. Least-squares fitting method is used to represent the analytical models of geometric errors. A kinematic chain consisting of various structural members of mMT is introduced to establish the positional relationships among its coordinate frames. Based on this kinematic chain a general volumetric error model has been developed to synthesize all geometric error components of a miniaturized machine tool. Then, a recursive compensation method is proposed to achieve error compensation efficiently. Test results show that the positioning accuracy of miniaturized machine tool has been improved with compensation. 相似文献
2.
The geometric errors of rotary axes are the fundamental errors of a five-axis machine tool. They directly affect the machining accuracy, and require periodical measurement, identification and compensation. In this paper, a precise calibration and compensation method for the geometric errors of rotary axes on a five-axis machine tool is proposed. The automated measurement is realized by using an on-the-machine touch-trigger technology and an artifact. A calibration algorithm is proposed to calibrate geometric errors of rotary axes based on the relative displacement of the measured reference point. The geometric errors are individually separated and the coupling effect of the geometric errors of two rotary axes can be avoided. The geometry error of the artifact as well as its setup error has little influence on geometric error calibration results. Then a geometric error compensation algorithm is developed by modifying the numeric control (NC) source file. All the geometric errors of the rotary errors are compensated to improve the machining accuracy. The algorithm can be conveniently integrated into the post process. At last, an experiment on a five-axis machine tool with table A-axis and head B-axis structure validates the feasibility of the proposed method. 相似文献
3.
Although error modeling and compensation have given significant results for three-axis CNC machine tools, a few barriers have prevented this promising technique from being applied in five-axis CNC machine tools. One crucial barrier is the difficulty of measuring or identifying link errors in the rotary block of five-axis CNC machine tools. The error model is thus not fully known. To overcome this, the 3D probe-ball and spherical test method are successfully developed to measure and estimate these unknown link errors. Based on the identified error model, real-time error compensation methods for the five-axis CNC machine tool are investigated. The proposed model-based error compensation method is simple enough to implement in real time. Problems associated with the error compensation in singular position of the five-axis machine tool are also discussed. Experimental results show that the overall position accuracy of the five-axis CNC machine tool can be improved dramatically. 相似文献
4.
N. A. Barakat M. A. Elbestawi A. D. Spence 《International Journal of Machine Tools and Manufacture》2000,40(6):833
In this paper, kinematic modelling of a Coordinate Measuring Machine (CMM) is carried out and the methodology followed in modelling is explained in detail. The model is simplified by certain assumptions which may result in over-simplification of the model. Consequently, the model is investigated and enhanced by adding the relevant and suitable geometric error terms. Different approaches are employed to evaluate the model coefficients. In the first approach, a commercial ring gauge is measured in a structured lattice in the work volume of the CMM. Resulting errors in these measurements are used in conjunction with some statistical methods to arrive at sets of model coefficients values. The second approach is based on measurement of the individual 21 error terms in the CMM by means of laser interferometry. These measurements are used to evaluate another set of model coefficients. A compensation strategy is proposed and tested using the model and the sets of coefficients obtained. Volumetric Performance of the CMM is evaluated according to ASME standards, before and after compensation. Improvement in the CMM volumetric performance is demonstrated and compared. 相似文献
5.
Chana Raksiri Manukid Parnichkun 《International Journal of Machine Tools and Manufacture》2004,44(12-13):1283-1291
This paper proposes a new off line error compensation model by taking into accounting of geometric and cutting force induced errors in a 3-axis CNC milling machine. Geometric error of a 3-axis milling machine composes of 21 components, which can be measured by laser interferometer within the working volume. Geometric error estimation determined by back-propagation neural network is proposed and used separately in the geometric error compensation model. Likewise, cutting force induced error estimation by back-propagation neural network determined based on a flat end mill behavior observation is proposed and used separately in the cutting force induced error compensation model. Various experiments over a wide range of cutting conditions are carried out to investigate cutting force and machine error relation. Finally, the combination of geometric and cutting force induced errors is modeled by the combined back-propagation neural network. This unique model is used to compensate both geometric and cutting force induced errors simultaneously by a single model. Experimental tests have been carried out in order to validate the performance of geometric and cutting force induced errors compensation model. 相似文献
6.
In this paper, comprehensive geometric errors, including linkage errors and volumetric errors, of a rotary table are measured totally by employing a double ballbar and obtained by a two-step identification procedure. The derivations of the center of the ball installed on the table are measured in the error sensitive directions with newly developed serial of two axes controlled circular paths. Hence, there are nine results measured from three mounting positions of the ball at the same rotation angle. These results are used to form the identification model based on the homogeneous transformation. Moreover, a sensitivity analysis method is applied to select the optimum installation parameters of the ballbar to diminish the influence of the inaccuracy of the measurement parameters. As the mounting position errors of the socket on the table are inevitable during the installation of the balls, a new correction procedure is developed as well. Finally, an experiment is conducted on the four-axis machining center. The comparison results between the predicted errors and the measured results are shown to verify the proposed method. 相似文献
7.
R. Ramesh M. A. Mannan A. N. Poo 《International Journal of Machine Tools and Manufacture》2000,40(9):1257
Accuracy of machined components is one of the most critical considerations for any manufacturer. Many key factors like cutting tools and machining conditions, resolution of the machine tool, the type of workpiece etc., play an important role. However, once these are decided upon, the consistent performance of the machine tool depends upon its ability to accurately position the tool tip vis-à-vis the required workpiece dimension. This task is greatly constrained by errors either built into the machine or occurring on a periodic basis on account of temperature changes or variation in cutting forces. The three major types of error are geometric, thermal and cutting-force induced errors. Geometric errors make up the major part of the inaccuracy of a machine tool, the error caused by cutting forces depending on the type of tool and workpiece and the cutting conditions adopted. This part of the paper attempts to review the work done in analysing the various sources of geometric errors that are usually encountered on machine tools and the methods of elimination or compensation employed in these machines. A brief study of cutting-force induced errors and other errors is also made towards the end of this paper. 相似文献
8.
Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error 总被引:8,自引:0,他引:8
This paper presents a new modeling methodology for nonstationary machine tool thermal errors. The method uses the dynamic neural network model to track nonlinear time-varying machine tool errors under various thermal conditions. To accommodate the nonstationary nature of the thermo-elastic process, an Integrated Recurrent Neural Network (IRNN) is introduced to identify the nonstationarity of the thermo-elastic process with a deterministic linear trend. Experiments on spindle thermal deformation are conducted to evaluate the model performance in terms of model estimation accuracy and robustness. The comparison indicates that the IRNN performs better than other modeling methods, such as, multi-variable regression analysis (MRA), multi-layer feedforward neural network (MFN), and recurrent neural network (RNN), in terms of model robustness under a variety of working conditions. 相似文献
9.
In the ultra-precision raster milling (UPRM) process, the existence of spindle inclination error can directly affect the dimensional accuracy of machined components. This study developed a novel spindle inclination error identification and compensation method based on the groove cutting in UPRM. In this method, the tilt angle of the intersection curve of two toruses (ICTT) generated from two neighboring rotary cuts in UPRM was measured to identify the spindle inclination error. A mathematical model was developed to simulate the ICTT profile and present the relationship between the tilt angle of ICTTs and the spindle inclination error by solving the differential of the ICTT function, by which the spindle inclination error can be solved under the given cutting parameters and the tilt angle of ICTTs. The effects of cutting parameters on the tilt angle of ICTTs were explored. An error compensation procedure was designed and a group of groove cutting experiments was conducted to identify and compensate the spindle inclination error. The theoretical and experimental results show that the proposed method can compensate for the spindle inclination error effectively and accurately. 相似文献
10.
Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics 总被引:6,自引:0,他引:6
A. C. Okafor Yalcin M. Ertekin 《International Journal of Machine Tools and Manufacture》2000,40(8):1199-1213
Volumetric positional accuracy constitutes a large portion of the total machine tool error during machining. In order to improve machine tool accuracy cost-effectively, machine tool geometric errors as well as thermally induced errors have to be characterized and predicted for error compensation. This paper presents the development of kinematic error models accounting for geometric and thermal errors in the Vertical Machining Center (VMC). The machine tool investigated is a Cincinnati Milacron Sabre 750 3 axes CNC Vertical Machining Center with open architecture controller. Using Rigid Body Kinematics and small angle approximation of the errors, each slide of the three axes vertical machining center is modeled using homogeneous coordinate transformation. By synthesizing the machine's parametric errors such as linear positioning errors, roll, pitch and yaw etc., an expression for the volumetric errors in the multi-axis machine tool is developed. The developed mathematical model is used to calculate and predict the resultant error vector at the tool–workpiece interface for error compensation. 相似文献
11.
This paper proposes an efficient and automated scheme to predict and identify the position and motion errors of rotary axes on a non-orthogonal five-axis machining centre using the double ball bar (DBB) system. Based on the Denavit-Hartenberg theory, a motion deviations model for the tilting rotary axis B and rotary C of a non-orthogonal five-axis NC machine tool is established, which considers tilting rotary axis B and rotary C static deviations and dynamic deviations that total 24. After analysing the mathematical expression of the motion deviations model, the QC20 double ball bar (DBB) from the Renishaw Company is used to measure and identify the motion errors of rotary axes B and C, and a measurement scheme is designed. With the measured results, the 24 geometric deviations of rotary axes B and C can be identified intuitively and efficiently. This method provides a reference for the error identification of the non-orthogonal five-axis NC machine tool. 相似文献
12.
基于球杆仪的数控机床误差识别与补偿 总被引:5,自引:0,他引:5
论述了数控机床几何误差的球杆仪识别及软件补偿技术。提出了从Renishaw球杆仪测量数控机床的联动误差数据中识别反向间隙、直线度、垂直度、定位误差的一种方法;建立了机床结构的每个误差元和切削刀具相对工件位置误差相联系的通用数学模型;用球杆仪在数控机床上进行补偿前后加工轨迹的测量实验表明该方法效率高、效果显著。 相似文献
13.
14.
Thermal error mode analysis and robust modeling for error compensation on a CNC turning center 总被引:3,自引:0,他引:3
Jianguo Yang Jingxia Yuan Jun Ni 《International Journal of Machine Tools and Manufacture》1999,39(9):1367
In this paper a novel concept of thermal error mode analysis is proposed in order to develop a better understanding of the thermal deformation on a turning center. The thermal error of the machine can be treated as the superposition of a series of thermal error modes with corresponding mode shapes and time constants. The selection of sensor location can then be improved based on the thermal error mode analysis. A robust modeling approach is also proposed to minimize the errors due to temperature measuring noise and the adverse effect of environmental changes. Through the use of thermal error mode analysis and the robust modeling approach, the number of thermal sensors has been reduced from 16 to four. The thermal error compensation system has been applied to a turning center in daily production for more than two years and it has kept year-round accuracy. The thermal drift in workpiece diameter on the turning center has been reduced from 35 μm to 6 μm from its center of tolerance. 相似文献
15.
数控机床定位误差的激光干涉法检测与补偿 总被引:8,自引:1,他引:8
用激光干涉法测量误差的原理,通过计算机控制的误差补偿系统对数控机床不的定位误差进行补偿,实验结果表明这种方法可以大幅度提高数控机床的定位精度。 相似文献
16.
In order to validate volumetric error compensation methods for five-axis machine tools, the machining of test parts has been proposed. For such tests, a coordinate measuring machine (CMM) or other external measurement, outside of the machine tool, is required to measure the accuracy of the machined part. In this paper, a series of machining tests are proposed to validate a compensation strategy and compare the machining accuracy before and after the compensation using only on-machine measurements. The basis of the tests is to machine slots, each completed using two different rotary axes indexations of the CNC machine tool. Using directional derivatives of the volumetric errors, it is possible to verify that a surface mismatch is produced between the two halves of the same slot in the presence of specific machine geometric errors. The mismatch at the both sides of the slot, which materializes the machine volumetric errors is measured using touch probing by the erroneous machine itself and with high accuracy since the measurement of both slot halves can be conducted using a single set of rotary axes indexation and in a volumetric region of a few millimetres. The effect of a compensation strategy is then validated by comparing the surface mismatch value for compensated and uncompensated slots. 相似文献
17.
基于补偿模糊神经网络的数控机床热误差预报模型 总被引:4,自引:0,他引:4
于金 《组合机床与自动化加工技术》2004,(4):78-79
文章提出了一种基于补偿模糊神经网络的数控机床热误差预报模型,讨论了该模型的详细结构、模糊规则、训练算法及相关技术问题,并给出了智能预报结果和精度评价. 相似文献
18.
19.
This paper proposes a machining test to parameterize error motions, or position-dependent geometric errors, of rotary axes in a five-axis machine tool. At the given set of angular positions of rotary axes, a square-shaped step is machined by a straight end mill. By measuring geometric errors of the finished test piece, the position and the orientation of rotary axis average lines (location errors), as well as position-dependent geometric errors of rotary axes, can be numerically identified based on the machine׳s kinematic model. Furthermore, by consequently performing the proposed machining test, one can quantitatively observe how error motions of rotary axes change due to thermal deformation induced mainly by spindle rotation. Experimental demonstration is presented. 相似文献
20.
The error model of CNC machine tool describes the relationship between the individual error source and its effects on the overall position errors. A practical problem in applying this technique to five-axis machine tool is that the predicted position errors cannot be justified. This paper, the first in a set of two, presents a new measurement device, the probe–ball, which can be used to measure the overall position errors of five-axis machine tools directly. To perform the accuracy test, a three-degree-of-freedom (3D) measuring probe is installed in the main spindle and a base plate is fixed on the turntable. The kinematic chain of the five-axis machine tool is then closed through connecting the central ball on the base plate with the extension bar of the probe. To generate simultaneous axes motion under the condition of closed kinematic chain, the central ball is defined as origin of the workpiece coordinate frame and the probe is driven along a path on a spherical test surface with the central ball as center. The overall position errors are measured with the 3D measuring probe. A theoretical model is derived to explain the nature of the probe–ball error measurements. 相似文献