共查询到20条相似文献,搜索用时 1 毫秒
1.
近年来,在线社交媒体的发展大大加速了谣言的滋生和传播,谣言的危害性使得谣言的自动检测技术受到研究学者的广泛关注.本文同时考虑事件与事件之间的全局结构关系以及事件内部消息传播的时序关系,以异质图为载体共同显式建模两种关系,提出一种新的时序感知的异质图神经谣言检测模型.该模型利用时序感知的自注意力机制捕获事件内部转发(或评论)贴之间的时序关系,并将具有时序信息的转发(或评论)贴与源贴融合,得到事件的局部时序表征;接着利用元素级注意力机制捕捉事件与事件之间的全局结构关系,学习事件的全局结构表征;最后将二者融合用于检测谣言.实验结果表明,该模型优于大多数现有模型,可以提高谣言检测性能,并且同样具有优秀的早期检测性能. 相似文献
2.
互联网大数据环境下,谣言事件的散播已成为以微博为代表的在线社交网络持续健康稳定发展的主要障碍之一,因此及时有效地进行谣言事件自动检测对营造清朗的网络环境和维护社会和谐发展有着现实意义。该文以微博事件为背景,综合谣言事件特征随时间变化特性以及时间维度上谣言事件的分布特点,引入论域划分思想,基于模糊聚类算法提出了随时间动态变化的事件时序特征构建模型;同时,基于社会学中谣言的传播原理,提出将事件流行度、模糊度和流传度作为微博谣言事件检测分类器的三项新特征。实验结果表明,该文提出的动态时序特征表示方法和三项新特征使谣言事件自动检测效果得到了可观提升。 相似文献
3.
社交媒体方便了人们的日常交流和信息传播,同时也是谣言滋生和传播的温床,因此如何在谣言传播早期自动监测极具现实意义,而现有的检测方法没有充分利用微博信息传播图的语义信息。为了解决这个问题,基于异构图注意力网络(HAN)构建了谣言监测模型MicroBlog-HAN。该模型采用含有节点级注意力和语义级注意力的分层注意力机制。首先,节点级注意力结合微博节点的邻居生成两组具有特定语义的节点嵌入;然后,语义级注意力融合不同语义,得到最终的节点嵌入,并输入到分类器中执行二分类任务;最后,给出输入微博是谣言还是非谣言的分类结果。在两个真实的微博谣言数据集上的实验结果表明,MicroBlog-HAN模型可以实现微博谣言较准确的识别,准确率超过87%。 相似文献
4.
基于深层特征和集成分类器的微博谣言检测研究 总被引:1,自引:0,他引:1
微博中存在着大量的虚假信息甚至谣言,微博谣言的广泛传播影响社会稳定,损害个人和国家利益。为有效检测微博谣言,提出了一种基于深层特征和集成分类器的微博谣言检测方法。首先,对微博情感倾向性、微博传播过程和微博用户历史信息进行特征提取得到深层分类特征;然后利用分类特征训练集成分类器;最后利用集成分类器对微博谣言进行检测。实验结果表明,提出的基于深层特征和集成分类器的方法能够有效提高微博谣言检测的性能。 相似文献
5.
众多谣言在公开社交平台微博上肆意产生与传播,谣言检测有利于降低谣言对社会产生的不良影响。为探究微博用户的行为特征与该用户发布谣言的关联,提出一种基于用户行为特征的微博谣言检测算法(RDUC)。该模型主要以用户的点赞、转发和评论等行为特征作为主要参数,挖掘用户历史行为与谣言发布的关联,并且将ERNIE模型和DPCNN模型相结合对微博谣言事件进行检测。通过使用Ma公开数据集进行实验并与3种常用的谣言检测算法比较得出:该算法的准确率高达90.1%,高于这3种常用谣言检测算法。因此RDUC算法具有实际意义和应用价值。 相似文献
6.
代码注释能够增强源代码的可读性、辅助软件开发过程,因此代码注释自动生成任务成为研究热点。然而现有工作大多只利用了源代码的序列信息或抽象语法树信息,未能充分捕捉代码语言特有的多种特征。为进一步利用源代码的多维度特征,提升注释生成的效果,构建基于多维度异质图结构的代码注释自动生成模型。利用异质图结构和图神经网络,将源代码的抽象语法树、控制流图、数据流图等进行融合并构建为具有多种节点和连边的异质表示图,以此表现代码的语义特征、序列特征、语法特征、结构特征等多维度特征。在真实数据集上的实验结果表明,该模型相较于Hybrid-DRL、NeuralCodeSum、SeqGNN等模型具有更好的效果,在BLEU-4、METEOR、ROUGE-L指标上分别最高提升1.6%、3.2%、3.1%,可获得更流畅、可读性更好的代码注释。 相似文献
7.
传统谣言检测算法存在提取文本语义、关键特征等效果不理想的问题,而一般序列模型在文本检测中无法解决特定语义下的特征提取,导致模型泛化能力差。为解决上述问题,该文提出一种改进的生成对抗网络模型(TGBiA)用于谣言检测,该模型采用对抗训练方式,符合谣言在传播过程中人为增删、夸大和歪曲信息的特点,通过对抗网络生成器和判别器的相互促进作用,强化谣言指示性特征的学习,不断提高模型的学习能力。训练过程中的生成器通过Transformer结构代替单一的RNN网络,实现语义的提取和特征的学习,同时,在训练过程中的判别器采用基于双向长短期记忆单元的深度网络分类模型,并引入注意力机制来提升对较长时间序列谣言的判断能力。在公开的微博和Twitter数据集上的实验结果表明,该文提出的方法比其他现有方法检测效果更好,鲁棒性更强。 相似文献
8.
为了解决谣言检测中由于缺乏外部知识而导致模型难以感知内隐信息,进而限制了模型挖掘深层信息的能力这个问题,提出了基于知识图谱的多特征融合谣言检测方法(KGMRD)。首先,对于每个事件,将帖子和评论共同构建为一个文本序列,并利用分类器从中提取其中的情感特征,利用ConceptNet基于文本构造其知识图谱,将知识图谱中的实体表示利用注意力机制与文本的语义特征进行聚合,进而得到增强的语义特征表示;其次,在传播结构方面:对于每个事件,基于帖子的传播转发关系构建传播结构图,使用DropEdge对传播结构图进行剪枝,从而得到更有效的传播结构特征;最后,将得到的特征进行融合处理得到一个新的表示。在Weibo、Twitter15和Twitter16 三个真实数据集上,使用SVM-RBF等七个模型作为基线进行了对比实验。实验结果表明:对比当前效果最好的基线,提出的KGMRD方法在Weibo数据集的Acc指标提升了1.1%;在Twitter15和Twitter16数据集的Acc指标上提升了2.2%,实验证明提出的KGMRD方法是合理的、有效的。 相似文献
9.
针对社交媒体平台上消息内容普遍很短、传播结构中存在大量空转发、用户角色与内容间的失配等条件约束,提出了一种基于传播网络中的用户属性信息和消息内容的谣言检测模型GMB_GMU。首先以用户属性为节点、传播链为边构建用户传播网络,并引入图注意力网络(GAT)得到用户属性的增强表示;同时,基于此用户传播网络,利用node2vec得到用户的结构表征,并使用互注意机制对其进行增强。另外,引入BERT建立源帖内容表征。最后,利用多模态门控单元(GMU)对用户属性表征、结构表征和源帖内容表征进行融合,从而得到消息的最终表征。实验结果表明,GMB_GMU模型在公开的Weibo数据上的准确率达到0.952,能够有效识别谣言事件,效果明显优于基于循环神经网络(RNN)和其他神经网络基准模型的传播算法。 相似文献
10.
随着社交媒体的迅速发展,谣言通过社交媒体迅速传播,识别社交媒体网络上的谣言是社交网络研究中一个至关重要的问题.本文提出了一种新的考虑注意力机制的微博谣言检测模型,考虑到卷积神经网络(CNN)提取到的特征对输出结果影响力问题,在经典的文本卷积神经网络(Text CNN)上引入了注意力机制,通过CNN中的卷积层学习微博窗口... 相似文献
11.
微博的低门槛造就了谣言产生的低成本,致使微博成为谣言信息的温床。因此,快速有效地检测谣言对微博至关重要。论文提出基于时间序列的微博谣言检测方法。为了提高谣言事件检测的性能,针对时间序列划分方法进行研究,提出基于聚类的微博事件划分方法,根据微博在时间上的聚合程度构建时间序列。同时基于GRU网络构建事件分类模型,自动学习特征用于谣言检测。实验结果表明,检测准确率达到96.7%,验证了该方法在谣言检测问题上的有效性。 相似文献
12.
社交媒体时代给我们带来便利的同时也造成了谣言泛滥,因此通过人工智能技术进行谣言检测具有重要的研究价值。尽管基于深度学习的谣言检测取得了很好的效果,但其大多数是根据潜在特征进行谣言检测的,无法学习情感与语义之间的相关性,同时忽视了从情感角度提供解释。为解决上述问题,该文提出一种基于双重情感感知的可解释谣言检测模型,旨在利用协同注意力机制分别学习谣言语义与用户评论情感,以及谣言情感与用户评论情感的相关性进行谣言检测,并通过协同注意力权重从情感角度提供合理的解释。在公开的Twitter15、 Twitter16和Weibo20数据集上的实验结果表明,该文提出的模型与对比模型相比,在准确率上分别提高了3.9%,3.9%和4.4%,且具有合理的可解释性。 相似文献
13.
14.
事件检测任务旨在从非结构化的文本中自动识别并分类事件触发词。挖掘和表示实体的属性特征(即实体画像)有助于事件检测,其基本原理在于“实体本身的属性往往暗示了其参与的事件类型”(例如,“警察”往往参与“Arrest-Jail”类的事件)。现有研究已利用编码信息实现实体表示,并借此优化事件检测模型。然而,其表示学习过程仅仅纳入局部的句子级语境信息,使得实体画像的信息覆盖率偏低。为此,该文提出基于全局信息和实体交互信息的画像增强方法,其借助图注意力神经网络,不仅在文档级的语境范围内捕捉实体的高注意力背景信息,也同时纳入了局部相关实体的交互信息。特别地,该文开发了基于共现图的注意力遮蔽模型,用于降低噪声信息对实体表示学习过程的干扰。在此基础上,该文联合上述实体画像增强网络、BERT语义编码网络和GAT聚合网络,形成了总体的事件检测模型。该文在通用数据集ACE 2005上进行实验,结果表明实体画像增强方法能够进一步优化事件检测的性能,在触发词分类任务上的F1值达到76.2%,较基线模型提升了2.2%。 相似文献
15.
微博谣言的广泛传播给当今社会造成了日益严峻的负面影响。基于深度神经网络的方法存在缺少大量带标签的数据。研究发现,谣言经常伴随负面情感,而非谣言则伴随正面情感,考虑到谣言与非谣言之间表现出的相反情感倾向性,提出一种将谣言检测和情感分析这两个高度相关的任务结合起来学习的多任务学习方法,为了尽可能多地挖掘不同任务之间的关联,全面分析谣言检测任务的特征,设计了一个由BERT和BiGRU联合的多任务学习框架(BERT-BiGRU-MTL,BBiGM)。利用权值共享的方法对两个任务进行联合训练,同时提取出任务之间的共同特征和针对谣言检测任务的特定特征,利用情感分析任务辅助谣言检测。研究结果表明,该方法在准确率、精确率、F1值评测指标上优于采用单任务学习的方法。 相似文献
16.
当前谣言检测工作主要研究谣言传播的方向特性,而忽视了谣言传播的全局结构特性,导致不能充分挖掘谣言潜在的结构特征;此外,现有研究忽略了谣言原始传播结构中存在的不真实关系,从而限制了传播节点特征的学习。为此,该文提出一种多层次的动态传播注意力网络模型(Multi-level Dynamic Propagation Attention Networks, MDPAN)用于检测谣言。该模型通过节点级注意力学习谣言传播图中所有连接边的贡献度,动态地关注对识别谣言有用的传播关系,并基于图卷积网络分别提取谣言不同层次的传播特征、扩散特征以及全局结构特征,最后引入基于注意力机制的池化方法对这些多层次的特征进行有效融合。在公开的Twitter15、Twitter16和Weibo16数据集上的实验结果表明,该文所提出的模型对比主流基于传播结构的EBGCN模型,整体准确率分别提高了2.1%、0.7%和1.7%。 相似文献
17.
18.
网络社交平台中大量谣言的广泛传播严重影响社会稳定.传统谣言检测方法无法有效处理文本中多义词和突出重要关键词,造成检测效果不理想.针对该问题,提出一种基于BERT模型的增强混合神经网络的谣言检测方法.该方法使用BERT模型将推文向量化,通过3种不同尺寸的卷积核学习推文特征,将这些特征进行最大池化拼接得到特征序列,并输入到... 相似文献
19.
为解决基于深度神经网络的微博谣言检测工作中带标签数据稀缺的问题,提出一种基于迁移学习的微博谣言检测方法.利用双层双向的门控循环单元和卷积神经网络组成的联合模型作为特征提取器,利用丰富的评论数据对联合神经网络进行预训练,将训练好的特征提取层迁移到微博谣言检测任务中,通过区分微调和斜三角学习率两种微调策略对特征提取层进行调整,使其适应于目标任务.实验结果表明,采用迁移学习方法的联合神经网络能有效提高微博谣言检测的准确率. 相似文献
20.
谣言检测是社交网络谣言研究、监测及整治的基础,其实施情况得到社会的广泛关注,相伴随的是微博谣言辨识的研究工作不断增多.该文把微博谣言作为研究对象,搭建了微博谣言的检测框架,其主要是由获取数据、处理数据及谣言检测三大步骤构成,基于实验研究过程,对比了差异化数据已标注比例时不同半监督学习的性能和ImCo-Forest算法之... 相似文献