共查询到20条相似文献,搜索用时 15 毫秒
1.
目前,人脸美丽预测存在数据规模小、分类难度大、深度特征研究不足等问题.为此,本文提出基于双激活层深度卷积特征的人脸美丽预测研究的解决方案.首先,采用数据增强和人脸对齐方法来增加训练集的样本数量和提高数据库的数据质量.其次,提出一种双激活层改进CNN模型,使其更适合人脸美丽预测应用.实验结果表明,本文所提方法在分类和回归预测方面均大幅度优于传统人脸美丽预测方法;同时,在主流的CNN模型中取得了较好的实时性和准确性,基于2000测试集的分类准确率达到61.1%,回归相关度达到0.8546.因此,双激活层在深层人脸美丽特征学习中发挥了重要作用,可广泛应用于人脸图像识别与处理. 相似文献
2.
目前,人脸美丽预测存在数据样本少、评价指标不明确和人脸外观变化大等问题。多任务迁移学习能有效利用相关任务和源域任务额外的有用信息,知识蒸馏可将教师模型的部分知识蒸馏到学生模型,降低模型复杂性和大小。本文将多任务迁移学习与知识蒸馏相结合,用于人脸美丽预测,以大规模亚洲人脸美丽数据库(Large Scale Asia Facial Beauty Database, LSAFBD)中人脸美丽预测为主任务,以SCUT-FBP5500数据库中性别识别为辅任务。首先,构建多输入多任务的人脸美丽教师模型和学生模型;其次,训练多任务教师模型并计算其软目标;最后,结合多任务教师模型的软目标和学生模型的软、硬目标进行知识蒸馏。实验结果表明,多任务教师模型在人脸美丽预测任务中取得6823%的准确率,其结构较复杂,参数量达14793K;而多任务学生模型通过知识蒸馏后分类准确率为6739%,但其结构简单、参数量仅1366K。本方法多任务教师模型分类准确率比其他方法高,多任务学生模型分类准确率虽然略低一点,但其模型更简单、参数量更少,更有利于用更轻量的网络模型进行人脸美丽预测。 相似文献
3.
如何将带有大量标记数据的源域知识模型迁移至带有少量标记数据的目标域是少样本学习研究领域的热点问题.针对现有的少样本学习算法在源域数据与目标域数据的特征分布差异较大时存在的泛化能力较弱的问题,提出一种基于伪标签的半监督少样本学习模型FSLSS(Few-Shot Learning based on Semi-Supervised).首先,利用pytorch深度学习框架建立一个关系型深度学习网络,并使用源域数据对网络进行预训练;然后,使用此网络对目标域数据进行分类预测,将分类概率最大的类标签作为数据的伪标签;最后,利用目标域的伪标签数据和源域的真实标签数据对网络进行混合训练,并重复伪标签标记与混合训练过程.实验结果表明,相对于现有主流少样本学习算法,FSLSS模型有更好的泛化能力及知识迁移效果. 相似文献
4.
针对时变信号模式分类和未标记样本信息的有效利用问题,提出了一种基于自组织过程神经网络的动态样本半监督学习算法.根据获得的已标记和未标记的过程函数样本信号,分别构建基于竞争学习规则和有教师示教方法的自组织过程神经网络模型,利用该网络的自组织特性,实现动态样本的分类标识.文中分析了算法的信息处理机制,给出了具体的实现步骤.... 相似文献
5.
卷积神经网络(Convolution Neural Network,CNN)用于人脸美丽预测,能学习到深层次的特征表达,但提取的是全局特征,忽略了人脸的局部信息,因此,泛化能力不强。为此,本文提出一种结合局部二值模式(Local binary pattern , LBP)和卷积神经网络的人脸美丽预测算法。首先,利用数据增强技术扩大数据库规模;其次,将LBP纹理图像和原始灰度图像进行通道融合;再采用1×1卷积操作进行通道特征图的线性组合,从而实现网络跨通道的信息整合,提升人脸美丽预测精度。基于大规模亚洲女性人脸美丽数据库(Large Scale Asian Female Beauty Database, LSAFBD)的实验结果表明,该算法在分类和回归预测中均取得了较好效果,优于其他模型的人脸美丽预测算法;表明在卷积神经网络中加入纹理图像能有效提升人脸美丽预测精度。 相似文献
6.
7.
人脸美丽预测是研究让计算机具有与人相似的人脸美丽预测能力的前沿课题,目前存在监督信息不足、模型易受噪声标签影响等问题。多任务注意力网络(Multi-Task Attention Network,MTAN)利用单个数据库的多种标签类型数据进行监督训练,但忽略了多个仅有一种标签类型的数据库进行多任务训练时效果不佳的问题;同时,未考虑噪声标签对MTAN的影响。噪声标签纠正机制通过比较最大预测概率和标签对应预测概率,来纠正噪声标签。为此,本文结合MTAN,提出双输入双任务注意力网络(Dual-Input Dual-Task Attention Network,DIDTAN),并融入噪声标签纠正机制。其中,DIDTAN能同时利用两个单标签类型人脸美丽数据库的监督信息,从而解决监督信息不足;而该网络融入噪声标签纠正机制,解决了噪声标签的影响,进而提高了人脸美丽预测准确率。DIDTAN将MTAN中任务共享的批量归一化层(Batch Normalization,BN)扩展为不同任务特定的BN层;引入神经辨别性降维(Neural Discriminative Dimensionality Reducti... 相似文献
8.
深度卷积神经网络(Deep Convolution Neural Network, DCNN)在人脸识别、图像分类和目标检测领域已取得较好效果,并得到广泛应用;但是,在人脸美丽预测中却存在拟合效果欠佳、网络训练难度大等问题。深度PCANet模型,将深度主元分析网络(Principal Component Analysis Network,PCANet)作为特征提取器;采用无监督预训练提取网络参数,具有网络训练时间短、图像特征提取快等特点,能有效避免DCNN存在的问题。为此,本文将深度PCANet引入人脸美丽预测,对训练集图像采用多尺度预处理,训练深度PCANet。该模型可提取人脸图像的结构性全局特征,采用特征增强方法可生成更具表征能力的特征;运用线性支持向量机(Support Vector Machine, SVM)和随机森林(Random Forest, RF)回归器进行训练和预测。基于SCUT-FBP人脸美丽数据库的实验结果表明,深度PCANet模型具有结构简单、特征提取快和无需网络调参优化等特点;选择合适的图像尺度与采用特征增强方法可提高人脸美丽评价结果,证明了所提方法的有效性和可行性。 相似文献
9.
《电子技术与软件工程》2019,(6)
随着深度学习的发展,基于深度学习的数据预测将发挥至关重要的作用。准确的数据预测结果不仅对系统的调度运行和生产有很大影响,而且有助于提高系统的稳定性和安全性。但在进行多变量时序预测时,传统时间序列方法所预测出的结果误差较大,训练时间也较长。针对以上缺陷,本文使用一种基于深度学习神经网络的多变量时序数据预测方法,该方法基于长短期记忆(LSTM)神经网络,并使用该方法对某地电力负荷值进行预测。通过实验证明本文所提出的方法预测结果较为精准。 相似文献
10.
11.
12.
针对于人脸图像检测的有效利用性,为了提高其检测的性能,提出一种新的基于 监督学习的优化相关性投影(ORP)人脸性别分类算法,并将其应用到基 于Eigenface算法与Fisherface算法的人脸识别中,以及应 用WPCA到基于PGA的性别分类中。本文算法首先基于带权主成分分析(WPCA)算法来降低脸部 维度,将脸部特征提取出;然后,对其进行优化,同时 计算ORP的误差函数;最后,最小化脸部ORP误差函数,计算特征向量的 欧式距离,进行人脸性别分类。将提出方法与 传统方法进行对比,在FERET数据库上进行了实验,证明了本文方法的有效性,获得了优 于传统方法的识别率。 相似文献
13.
14.
针对Android系统自带的人脸检测算法不能精确地检测人脸,尤其是带眼镜后,根本无法检测到人脸.本文研究了一种基于Android系统下的AdaBoost人脸检测算法.首先介绍了Android平台下的人脸检测体系结构,然后对AdaBoost人脸检测模块,包括特征值与特征值的计算、AdaBoost分类器、开发环境搭建分别进行了说明.最后通过样本创建,以及训练好的分类器进行人脸检测.实验结果表明:由于充分利用AdaBoost人脸检测方法实时性比较强、检测率高,该方法完全满足Android平台下人脸检测的需要. 相似文献
15.
16.
17.
帕金森病是一种常见的慢性神经系统疾病,构音障碍是帕金森病的早期症状之一。基于语音进行帕金森病的辅助诊疗有助于更早发现病情和观测病情的发展。传统方法常通过对语音特征(如频率微扰、振幅微扰等)的参数计算来进行疾病评估,然而这些特征可能无法全面反映所有的病理现象,从而影响了检测和评估的准确率。为更好地提取帕金森病患者语音中的病理信息,提升检测和评估的准确率,该文提出一种基于掩蔽自监督语音特征提取的帕金森病检测方法。首先,从帕金森病患者的原始语音中提取Mel语谱图特征,得到患者富含病理特征的全局时序化表示;然后,对部分Mel语谱图特征进行掩蔽,并通过掩蔽自监督模型对掩蔽部分进行重构,从而学习到帕金森病患者语音特征的更高级表示。为解决帕金森病语音数据稀缺的问题,该文先在LibriSpeech公开数据集上进行掩蔽自监督模型的预训练,然后基于迁移学习的思想,利用帕金森病语音数据对预训练好的掩蔽自监督模型进行微调和加权求和,以提升该模型特征表示学习的性能。最终,使用随机森林和支持向量机分类器分别对提取好的语音特征进行分类,以实现帕金森病的检测。该文在MaxLittle公开数据集和课题组自采数据集上,采用10折交叉验证的方法验证了所提方法的有效性。结果表明,与传统的Mel语谱图特征检测方法和其他经典的自监督特征提取方法相比,所提方法在准确率、敏感度、特异度性能方面均有明显提升。 相似文献
18.
针对非约束场景下小尺寸人脸检测困难的问题,提出了一种基于增强卷积神经网络的尺度不变人脸检测方法。首先,在SSD基础检测网络的两个浅层特征图上,通过协调聚合当前层特征图和前后两层特征图的特征信息,对当前层特征图的鉴别性和稳健性进行增强。然后,对两个增强特征图进行负样本筛选,通过增加分类的难度来降低由小尺寸锚框引起的人脸检测假正率上升。最后,为原始特征图和增强特征图设置了两种基于锚框尺寸的损失函数,并通过加权求和的方式对其进行融合。在FDDB和WIDER FACE数据集上的测试结果表明,文中所提方法比目前主流人脸检测方法具有更高的检测精度。 相似文献
19.
针对高速移动正交频分复用系统,提出了一种新型的基于深度学习的时变信道预测方法。为了避免网络参数随机初始化造成的影响,本文方法首先基于数据与导频信息获取较理想的信道估计,利用其对BP神经网络进行预训练处理,以获取理想的网络初始参数;然后,基于预训练获取网络初始值,利用基于导频获取的信道估计对BP神经网络进行再次训练,以获取最终的信道预测网络模型;最后,本文方法基于该预测网络模型通过线上预测实现了时变信道的单时刻与多时刻预测。仿真结果表明,本文方法可以显著地提高时变信道预测精度,且具有较低的计算复杂度。 相似文献
20.