首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用钢渣掺量20%和粉煤灰掺量10%~20%制得的钢渣复合水泥达到了纯水泥熟料强度的80%以上,复合掺杂有利于水泥强度发展。钢渣的最佳掺加量为20%。钢渣复合水泥浆体线膨胀率很小,无收缩,体积稳定性良好。凝结时间随钢渣粉煤灰量增加而增加,其中大掺量钢渣粉煤灰水泥安定性合格。钢渣三种不同细度的活性指数分别为80.4、82.9和79.5,达到了一级钢渣粉的要求。  相似文献   

2.
研究通过掺加助磨剂粉磨钢渣的方法,提高钢渣微粉的细度和活性,达到高效利用钢渣目的.结果表明,随着钢渣掺量的增加,钢渣复合水泥的抗折强度呈先上升后下降趋势,掺量为30%时抗折强度最高.钢渣复合水泥的28 d抗压强度直线下降,3 d抗压强度先增加后再下降,30%掺量时强度最高,达4.75 MPa.结合实际经济效益,最终确定钢渣复合水泥的配比为熟料-65%、钢渣-30%、石膏-5%,助磨剂A掺量为0.1%时效果最好,相比无助磨剂的钢渣复合水泥,细度降低了49.0%,且28 d抗压强度提高了6 MPa.  相似文献   

3.
通过研究石灰石掺量对钢渣复合水泥强度和安定性等的影响,确定了钢渣—石灰石复合水泥的合理配比,制备了掺量大、性能优良的钢渣—石灰石复合水泥。结果表明,水泥熟料掺量50%、钢渣35%、石灰石10%的钢渣复合水泥,其各项性能指标均达到32.5R等级复合硅酸盐水泥国家标准要求。  相似文献   

4.
在高掺量矿渣水泥中掺少量可看作低质熟料的钢渣,弥补由于熟料掺量少造成的碱性不足。当混合材的总量为60%~65%时,钢渣掺量控制在15%~20%左右,只需采用普通外加剂,就能够生产425水泥。工业性试验在太钢东山水泥厂进行。  相似文献   

5.
利用熟料、钢渣、矿渣和石膏粉配制低热钢渣矿渣硅酸盐水泥,将矿渣、钢渣掺量对水泥各种性能影响以二维等值线表征.结果表明:掺加钢渣、矿渣分别降低和增加水泥的标准稠度用水量,两者都延迟水泥的初、终凝时间,钢渣的延迟作用比矿渣大.水泥强度随着钢渣量的增加而降低,矿渣掺量对强度的影响是先随矿渣掺量的增加而提高,然后又随着矿渣掺量增加而降低,矿渣掺量存在一个最佳值.矿渣对强度的增强作用是后期比早期大,抗折比抗压大.掺入钢渣矿渣混合材都能显著降低水泥早期水化热,钢渣替代熟料降低早期水化热的值是等量矿渣替代熟料的1.5倍,双掺混合材比单掺降低早期水化热作用大.  相似文献   

6.
研究了气淬钢渣活性、制备钢渣水泥的方案及不同方案下制备的掺气淬钢渣水泥的物理性能及水化机理。结果表明,气淬钢渣活性指数高于普通钢渣,制备掺气淬钢渣水泥适宜采用加入激发剂或复掺水淬高炉矿渣,在激发剂作用下,气淬钢渣掺量达到50%时,其水泥强度满足P.SS32.5级水泥的要求,而普通钢渣在掺量为50%时,强度已达不到水泥的强度要求;而在复掺水淬高炉渣和气淬钢渣作用下,气淬钢渣掺量达到40%时,其水泥强度满足P.SS32.5级水泥的要求,而普通钢渣水泥强度已达不到要求;气淬钢渣用于生产高掺量、高强度等级的水泥是可行的。  相似文献   

7.
钢渣作为铁质校正原料对水泥熟料性能的影响(英文)   总被引:1,自引:0,他引:1  
探讨了钢渣作为一种铁质校正原料在水泥生料配料中的应用,通过掺加不同含量的钢渣,对其易烧性进行了研究,并对不同钢渣掺量的熟料进行了力学性能研究。用X射线衍射和扫描电子显微镜等对水泥水化进程和水化产物进行了分析。结果表明:钢渣作为一种铁质校正原料,在水泥熟料中的掺量可以达到6%~10%,3组不同钢渣掺量、不同率值的水泥生料在1450℃烧成30min后,熟料抗折强度和抗压强度分别达到9.0MPa和58MPa以上。  相似文献   

8.
为有效利用钢渣力学性质,通过室内无侧限抗压试验、CBR试验和浸水膨胀试验优选钢渣碎石级配,并设计水泥稳定钢渣碎石材料水泥剂量,研究钢渣掺量和养生龄期对水泥稳定钢渣碎石力学强度影响规律。研究表明,C级配的钢渣碎石材料击实特性、CBR和浸水膨胀率最优,水泥掺量4%的级配钢渣碎石7d抗压强度满足公路工程基层抗压强度设计要求,且水泥掺量超过4.0%时,抗压强度增长速率降低显著;养生初期,水泥稳定钢渣碎石力学强度随钢渣掺量增加呈线性提高;养生龄期超过7d时,钢渣掺量80%的水泥稳定钢渣碎石力学强度最大;不同钢渣掺量的水泥稳定钢渣碎石力学强度在养生前期增长迅速,养生龄期超过28d时,抗压强度增速减缓。  相似文献   

9.
水泥增强剂的试用及效益分析   总被引:1,自引:0,他引:1  
国内中小型水泥厂生产矿渣、火山灰、粉煤灰水泥时,熟料用量较高,混合材掺量少。国标规定,矿渣水泥中矿渣最大掺量是70%,火山灰水泥中火山灰为50%,煤粉灰水泥中粉煤灰为为40%。实际生产中多数厂家还未达到最大掺量,其原因是熟料强度平均值较低,生产325、425号矿渣水泥时,矿渣掺量仅40%、20%左右,远未达到最大掺量。针对上述问题,我们试制一种能提高水泥技术性能(早期强度高,抗冻性好)及掺合料掺量高的增强剂。这种增强剂应对水泥无害,长期强度能保持增长,而且生产工艺简单。经过小试、中试证明该增强剂性能良好。在通达水泥…  相似文献   

10.
用卧辊磨将钢渣、矿渣分别粉磨成比表面积为450 m2/kg、500m2/kg的粉体,用其替代部分水泥熟料,分别进行了单掺钢渣粉及掺钢渣-矿渣复合粉的水泥基混凝土胶砂强度实验研究.实验结果表明:单掺钢渣时,随着钢渣替代水泥熟料的比例增大,胶砂强度有明显下降;当掺钢渣-矿渣复合粉替代50%的水泥熟料时,钢渣与矿渣会相互激发,相互促进水化.当钢渣在复合粉所占比例为20%时,水泥基混凝土胶砂强度达到最佳值,该成果有重要工程应用价值.  相似文献   

11.
宋强  胡亚茹  李婷  赵胜东 《硅酸盐通报》2015,34(7):1762-1768
通过在硅酸盐水泥中加入不同掺量矿渣粉以及不同掺量和细度的钢渣粉,研究了矿渣和钢渣对水泥强度,孔结构和压蒸安定性的影响.实验结果表明:矿渣与熟料的比例是控制特定钢渣掺量的水泥28 d抗压强度的决定性因素,熟料和矿渣按照1:1混和的水泥具有最高强度,影响水泥28 d最高抗折强度则是矿渣掺量.加入钢渣增大了水泥的孔隙率,而加入矿渣则可以减少试块孔隙率;矿渣能够明显细化浆体的孔结构,钢渣矿渣水泥的28 d抗压强度主要受到大于50 nm孔隙含量的影响.水泥压蒸膨胀率随着钢渣掺量增加而增加,矿渣能够显著改善钢渣水泥的压蒸安定性.  相似文献   

12.
本文研究了钢渣、矿渣、石膏和粉煤灰对钢渣水泥抹面砂浆性能的影响。结果表明:钢渣水泥复合材料抗压强度和抗折强度随着钢渣掺量的增加而呈减小的趋势;矿渣(20%)复配改性钢渣水泥复合材料,28d最佳抗压强度和抗折强度(49.2MPa和6.8MPa)分别较未掺矿渣的提高了3.3%和16.2%;当脱硫石膏掺量在3%时,可提高钢渣-水泥-矿渣力学性能;当增塑剂掺量控制在0.4%,水泥抹灰砂浆施工性能较好,砂率在1:4时,钢渣水泥抹灰砂浆28d抗压强度可达到13.5MPa(满足M10等级要求),当砂率为1:5时,钢渣水泥抹灰砂浆28d抗压强度可达到7.5MPa(满足M5等级要求)。  相似文献   

13.
王宁章  王善拔 《水泥》1999,(10):1-3
利用XRD、SEM及强度测定等方法研究了MnO2 对硅酸盐水泥熟料性能的影响。结果表明 ,当MnO2 掺量小于2 0 %、煅烧温度高于1400℃时 ,MnO2 对熟料的抗压强度影响不大 ,可生产出优质水泥 ;当煅烧温度低于1400℃时 ,熟料的强度下降 ,且MnO2 外掺量越多 ,强度下降越明显 ,特别是3d和7d强度。  相似文献   

14.
孙家瑛 《粉煤灰》2003,15(6):14-16
本文阐述了矿渣和矿渣钢渣复合超量替代部分水泥对混凝土力学性能的影响。实验结果表明:矿渣等量替代时,掺量为30%的混凝土强度最高;钢渣等量替代时,掺量为20%的混凝土强度最高;超量替代能有效改善大掺量矿渣混凝土早期强度,最佳超代系数为1.3。实验证明:采用超代技术配制混凝土可以使水泥被替代量提高到70%。  相似文献   

15.
本文较系统地研究了石灰石掺量,熟料掺量,石膏掺量及熟料细度等因素对利用石灰石作混合材生产硅酸盐水泥强度的影响;找出了影响该品种水泥强度的主要因素和生产的最佳条件,并对石灰石硅酸盐水泥的性能进行了初步探讨。  相似文献   

16.
钢渣矿渣用作掺合料配制生态水泥,辅以石灰石粉进一步调节颗粒径、降低原料成本.在钢渣为25%、矿渣15%、石灰石为15%时,配制PC32.5生态水泥达到最优指标.由研究各单掺的具体实验,初步得出不同废渣对强度等级的影响,进而简化双掺和三掺的实验量;再由筛选后的实验配比来检测生态水泥的性能.从工业化角度看,对水泥粉磨企业生产有一定的指导意义.  相似文献   

17.
以81.5%的矿渣、5%的钢渣、12.5%的脱硫石膏以及1%的水泥熟料,制备出了28 d抗压强度为56.75 MPa的低碱度胶凝材料,该胶凝材料可用于制备低碱度人工鱼礁混凝土.通过改变钢渣和脱硫石膏的掺量,研究了其掺量变化与试件强度的影响关系.实验结果表明:在该体系中,当钢渣掺量小于5%时,胶砂试块的强度随着钢渣的增加而提高;当钢渣掺量大于5%时,胶砂试块的强度随着钢渣掺量的增加而降低,并在钢渣掺基大于20%时快速下降.脱硫石膏的掺量对胶砂试块的强度影响更为显著;当脱硫石膏掺量达到12.5%时,与不含脱硫石膏的试样相比,抗压强度和抗折强度分别提高了168%和176%.利用XRD和SEM分析净浆的水化过程,结果表明,体系在早期水化主要生成AFt相和C-S-H凝胶,并对强度的增长起了主要作用.  相似文献   

18.
掺高fCaO物料的水泥抗硫酸盐性的初步研究   总被引:1,自引:0,他引:1  
测试了掺入不同量的高钙粉煤灰、高fCaO熟料、钢渣及石膏的试样抗蚀系数、质量增量和强度,结果表明,掺高fCaO物料的水泥抗硫酸盐性与引入fCaO量、浸渍的硫酸盐种类和浓度有关,掺高fCaO熟料和钢渣的水泥抗硫酸盐性优于高钙粉煤灰的水泥,适量石膏的掺入可改善试样的抗硫酸盐性,在实际应用中可通过控制引入的fCaO量和掺入适量石膏来提高掺高fCaO物料的水泥抗硫酸盐性。  相似文献   

19.
将400、450、500m^2/kg三个细度的钢渣微粉与细度为450m^2/kg的矿渣复合成为双掺料,配制成复合水泥。试验表明:该水泥的标准稠度需水量随钢渣掺量增加呈减小的趋势,终凝时间则逐渐延长。当钢渣掺量不变时,提高钢渣微粉的细度,水泥的标稠需水量变化不大。随钢渣掺量增加,水泥各个龄期的抗压和抗折强度呈下降趋势。在相同的掺量条件下,钢渣粉细度为400m^2/kg比表面积、掺量为10%时,28d抗压强度明显降低。提高钢渣粉细度,28d抗压和抗折强度总体上呈增加的趋势。将450m^2/kg比表面积的钢渣微粉与矿渣微粉复合为双掺料,是经济可行的技术方案。  相似文献   

20.
硅酸盐水泥对钢渣活性激发的性能研究   总被引:2,自引:0,他引:2  
单立福  周宗辉  程新 《水泥》2008,(3):8-10
试验研究了在硅酸盐水泥体系中通过碱性激发提高钢渣水化活性的方法.研究表明,钢渣掺入量<30%时,硅酸盐水泥对钢渣的活性激发效果最好;复掺矿渣对钢渣活性的激发效果优于粉煤灰,即使掺量为30%时,其早期强度也与相应龄期普通硅酸盐水泥强度持平,而后期强度逐渐超过纯水泥的强度;在普通硅酸盐水泥体系中掺入钢渣可以改善其硬化浆体的性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号