首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
针对当前行人检测过程中存在速度慢、精确率不高以及高复杂度运算的问题,提出一种兼顾轻量化与检测精确率的卷积神经网络算法(ECG-YOLO)。该算法采用EfficientNetv2与坐标注意力(coordinate attention, CA)模块重新设计主干网络,提升网络的检测速度及精度。设计参数量和计算量更小的GhostConv模块以降低特征通道融合过程中的计算量。加入自适应Gamma校正算法减少复杂场景下光照等因素的影响。改进后的算法在NVIDIA TX2开发板上测试,检测精度达91%以上,较原算法提高了1.7%,参数量和计算量分别为原算法的40.8%和36.3%,具有较好的检测精度与实时性。  相似文献   

2.
基于无人驾驶领域的飞速发展,为提高道路行人目标检测的速度和精度,提出一种基于YOLOv5 网络改进的YW- YOLO的道路行人目标检测方法,在YOLOv5 模型的neck结构中改入RepGFPN, 充分交换高级语义信息和低级空间信息, 添加自适应融合机制,引入SimAM 注意力模块机制,提高算法的特征提取能力,在损失函数方面,使用Optimal Transport Asignment 优化损失函数。实验结果表明,所提算法与原算法相比,在道路行人类别数据集上识别精确率由38.1%提升到 52.6%,检测速度由29.4 fps 提高到30.8 fps, 具有更好的检测效果。  相似文献   

3.
针对传统水下图像检测方式易受水中光线、复杂环境的影响,造成水下目标识别精度不高,泛化性较差的问题,提出了一种改进YOLOv5s的水下目标检测算法。首先引入了Double MSRCR算法,解决了水下物体清晰度低,特征模糊的问题。在网络结构方面,主干网络引入C_VAN模块,提升了神经网络特征提取能力;其次在颈部网络中,引入RFB_S感受野,增强神经网络的多尺度适应能力;最后引入NAMAttention空间与通道注意力机制,增强网络上下文特征的表达能力。所提方法相较于Faster-RCNN检测精确度提高了6.5%,相较于YOLOv4检测精确度提高了4.1%,相较于YOLOv5s检测精确度提高2.7%,检测速度提升了56.34 fps,证明了方法适用于实时水下检测任务。  相似文献   

4.
传统的陶瓷缺陷检测主要依赖人工目测或放大镜观察,为解决检测效率低、结果主观性强等问题,提出了一种基于深度学习的陶瓷表面缺陷检测算法,针对于陶瓷杯表面的缺陷具体情况,在YOLOv5目标检测模型的基础上,增加小目标检测层,同时使用位置注意力机制进行特征重构提高检测的精确度,实现了高精度的缺陷检测。针对实际生产中的陶瓷双层杯进行数据采集训练,并对于每批数据进行推理,最终平均检测精度达到了95.4%。本文所改进的YOLOv5缺陷检测模型拥有更高的准确率、识别速度快等优点,可以极大地减少陶瓷质检减少人力物力的损耗与时间成本。  相似文献   

5.
针对传统隧道火灾检测方法速度慢、误检率高的问题,提出了一种基于 YOLOv5s 的实时火焰检测算法,采用 K-means 重新计算锚框尺寸。 本文提出的 YOLOv5s-SRGAN 融合算法,在 1 326 幅隧道火焰图像中的召回率为 94%,是 YOLOv5s 的 1. 7 倍。 引入了 CBAM 注意力机制模块和梯度均衡机制,分别通过特征提取网络和损失函数提升模型的性能。 与原 YOLOv5s 相 比,火焰检测的平均正确率(IOU= 0. 5)提高了 44%,测试集平均检测速度为 32 FPS。 结果表明,改进后的火焰检测算法对小火 焰目标有了更好的识别效果。  相似文献   

6.
当前的研究中密集场景行人检测精度较低,为提高检测精度,提出一种基于YOLOv5网络的改进方法V-YOLO,采用加权双向特征金字塔网络(bi-directional feature pyramid network, BiFPN)改进原始网络中的路径聚合网络(path aggregation network, PANet),加强多尺度特征的融合能力,提高对行人目标的检测能力。为了保留更多的特征信息,提高主干网络的特征提取能力,添加残差结构VBlock;引入SKNet(select kernel networks)注意力机制,动态融合不同感受野的特征图,提高对不同行人特征的利用率。使用CrowdHuman数据集进行训练和测试,实验结果表明,所提出算法比原始网络的精确度、召回率和平均精度值分别提高1.8%、2.3%和2.6%,验证了所提出算法能有效的提高密集场景下行人目标检测的准确率。  相似文献   

7.
针对遥感图像中目标排列紧密,背景复杂的问题,设计Transformer和卷积的双向交互模块(CTN)作为网络特征提取结构,使模型能够弱化背景噪声带来的干扰且能更好的捕获全局信息。其次,为了加强特征提取网络在复杂背景下的提取能力,构建了DenseBlock模块和ConvBlock模块,所设计的模块能增强模型在多目标下多尺度学习的能力,相比原网络能提取出更丰富的语义信息。最后对数据集中所有实例分布进行统计分析,其存在的许多小目标容易使原网络存在漏检误检的现象,针对这种情况,在检测头部分额外添加了一个检测头来缓解目标尺度变化带来的负面影响,同时去除对检测效果提升不明显的特征提取分支及检测分支,使用K-means++重新聚类得到最优锚框并分配至裁剪后的3个预测特征层。实验结果表明,改进的网络能有效改善遥感图像的漏检与误检的情况,在目标密集分布的情况下提升YOLOv5s的检测能力,改进的网络能更快收敛,均值平均精度(mean average precision, mAP)相比于原YOLOv5s算法提高了3.1%。  相似文献   

8.
针对在实际的交通道路目标检测中,存在着小目标检测精度低,遮挡目标容易出现漏检误检等问题,提出了一种改进的YOLOv5s道路目标检测算法YOLOv5s-OEAG。将YOLOv5s的标签分配策略更换为效率更高的OTA标签分配策略,提高模型的检测精度与泛化能力;提出了一种轻量化的解耦预测头对不同尺寸的特征层进行分类任务与回归任务的解耦,提高模型对道路中小目标的检测能力;将原始模型中的最近邻插值上采样模块替换为轻量级通用上采样CARAFE模块,有助于更好地保留图像中的细节信息,提高模型的精度;提出了一种新的C3模块GMC3,在减小模型计算量的同时提高模型捕获特征的能力;为了提高模型的泛化能力,对KITTI数据集进行了扩充,增加了小目标的数量。实验结果表明,改进后的模型在经过扩充后的KITTI数据集的mAP达到了90.4%,比原始模型的精度提高了2.8%;FPS为75,满足实时性的要求,在一定程度上提高了对复杂交通场景的适应能力。  相似文献   

9.
针对平板陶瓷膜表面缺陷实时检测时存在检测准确率较低的问题,本文提出了一种融合坐标注意力和自适应特征的YOLOv5陶瓷膜缺陷检测方法。通过在原有YOLOv5模型的主干网络中加入坐标注意力机制,建立位置信息和通道之间的关系,从而更准确地获取感兴趣区域。在原始网络的预测网络中融入自适应特征融合机制,提高模型对多尺度缺陷的检测能力。将空洞空间卷积池化金字塔模块替换原始网络中的空间金字塔池化模块,提高卷积核视野获取更多的有用信息。实验结果表明:本文模型平均精度为97.8%,检测帧数为32 FPS,平均精度与原始YOLOv5模型相比提高了5.5%。本文提出的模型在满足平板陶瓷膜缺陷的实时检测条件下,提高了模型的检测准确率,对推动平板陶瓷膜缺陷检测的发展具有一定的参考价值。  相似文献   

10.
针对高速公路视频数据中道路场景复杂、远端车辆目标小等现象,导致车辆逆行检测模型准确率低的问题,提出了一种基于YOLOv5和DeepSORT的CECAY5D模型框架。框架中设计了一种通道-空间注意力单元CECAC3,用于增强模型对小目标聚集区域的关注程度,提升小目标车辆检测的精度。CECAC3注意力单元是在有效通道注意力模块基础上增加了C3残差模块和空间注意力模块。在高速公路车辆逆行视频数据集下进行对比试验,实验结果表明,逆行检测模型CECAY5D在高速公路监控视频下的检测率和漏检率分别为90%和10%,相比于YOLOv5+DeepSORT模型,检测率提高了25%,漏检率降低了25%,因此该模型具有较高的检测率和较低的漏检率。  相似文献   

11.
遥感图像中的目标具有背景复杂、方向多变等特点。利用传统方法进行遥感图像目标检测过程复杂且费时,存在精度低,漏检率高等问题。针对以上问题,提出一种改进的YOLOv5-AC算法,该算法以YOLOv5s模型为基础,首先在原有的Backbone中构建非对称卷积结构,增强模型对翻转和旋转目标的鲁棒性;其次在主干网络的C3模块中引入坐标注意力机制提升特征提取能力,并使用Acon自适应激活函数激活;最后使用CIOU作为定位损失函数以提升模型定位精度。改进后的YOLOv5-AC模型在NWPU VHR-10和RSOD数据集上进行实验,平均精确度均值分别达到了94.0%和94.5%,分别比原版YOLOv5s提升了1.8%和2.3%,有效提高了遥感图像目标检测精确度。  相似文献   

12.
针对在复杂背景下的遥感小目标与周围场景因特征相似度高而导致的小目标检测正确率低的问题,提出一种基于残差网络优化的航拍小目标检测算法。首先,在YOLOv5网络中引入改进的SE_ECSP模块,减少网络计算参数的同时,使得小目标的特征权重在网络在卷积池化过程中得以提升;然后,在网络的Prediction中添加一个160×160的检测层,对小目标的细节信息进行局部放大与提取;最后,选取CIoU和NMS作为损失函数对同一网格中的候选框进行多次循环结构的判断和筛选,从而有效避免小目标的漏检问题。实验结果表明,改进后的网络用于遥感小目标检测的查准率为85.12%,损失函数值为0.048 41,相比改进前的网络检测精度和鲁棒性得以提升。  相似文献   

13.
针对石英坩埚气泡检测现有方法实时性差及小目标检测能力不足的问题,提出了一种改进YOLOv5的石英坩埚气泡检测算法YOLOv5-QCB。首先,自建石英坩埚气泡数据集,根据气泡尺寸小且分布密集的特点,减少网络下采样的深度,保留丰富的细节特征信息;同时,在颈部使用空洞卷积以增大特征图感受野,实现全局语义特征的提取;最后,在检测层前添加有效通道注意力机制,增强重要通道特征的表达能力。实验结果表明,相比于原模型,改进后YOLOv5-QCB能有效降低对小气泡的漏检率,平均检测精度从96.27%提升到98.76%,权重缩减了二分之一,能够实现快速、准确检测石英坩埚气泡数量。  相似文献   

14.
针对传统方式检测风力涡轮机表面缺陷时出现的精度不足、泛化性较差问题,提出了一种改进YOLOv5s的风力涡轮机表面缺陷检测模型。在网络结构方面,首先在主干特征提取网络引入改进的MobileNetv3网络,用于协调并平衡模型的轻量化和精度关系;其次采用BiFPN式的融合方式,增强神经网络的多尺度适应能力,提高融合速度和效率;最后为轻量化的自适应调节特征权重,运用ECAnet通道注意力机制,进一步提高神经网络的特征提取能力。在损失函数方面,将边框回归的损失函数修改为αIoU Loss,进一步提升了bbox回归精度。实验结果表明,基于YOLOv5s的改进算法可以在复杂环境下快速准确地识别风机表面的缺陷目标,能够满足实时目标检测的实际应用需求。  相似文献   

15.
针对雾霾天气下道路交通标志识别难度大、精确度较低的问题,提出一种基于YOLOv5的雾霾天气交通标志识别模型。首先在YOLOv5原始模型上融入卷积注意力机制,在空间维度和通道维度上进行特征增强,抑制雾霾天气对模型的干扰;然后将BiFPN作为neck层中的特征融合结构,更加充分地融合多尺度特征,减少目标信息丢失;并选用CIoU作为YOLOv5的损失函数提高定位能力;使用K-means聚类算法在TT100K和CODA数据集重新获取锚框值,加快模型收敛速度。实验结果表明,改进后模型识别精度达到92.5%,比YOLOv5提升5.6%,在雾霾天气下仍能准确识别交通标志,速度达27 FPS,能够进行实时检测。  相似文献   

16.
为了提高交通目标检测的精度和效率,提出一种改进YOLOv5s的交通场景多目标检测方法,在YOLOv5s的主干网络中引入高效的层聚合网络结构来提高模型学习目标特征的能力,引入了通道注意力和空间注意力结合的卷积注意力模块(BAM)机制,进一步提高网络模型的特征提取能力,通过采用α-IoU作为边界框回归损失函数,提高了边界框回归精度。实验结果表明,改进的目标检测模型相较于YOLOv5s原模型在检测精度上提升了2.4%,模型参数量和模型大小分别降低了20.9%和19.1%。实现了在不同时间段准确且高效的检测交通场景的多种目标,保证了实时检测的应用需求。  相似文献   

17.
针对圆网印花图案疵点检测问题,本文采用了一种基于YOLOv5改进算法模型来检测印花图案的疵点。本实验根据实际的情况对YOLOv5模型网络结构进行了更改,首先,对YOLOv5网络的骨干部分进行优化改进,引入了注意力机制模块,对输入图片的通道注意力和空间注意分别提取特征。其次,针对印花疵点目标较小的情况对网络的检测层结构进行了修改。实验结果显示,改进的YOLOv5检测算法精确率提升了14.4%,检测速度提升了7.6fps,达到了43.1fps满足实时检测要求。  相似文献   

18.
针对煤矿电力设备缺陷检测精度低的问题,提出了一种基于改进YOLOv5s的煤矿电力设备缺陷检测的方法。该方法主要包括3个方面的改进:首先,提出了一种多分支的坐标注意力模块,增强了模型获得缺陷区域信息的能力;其次,提出了一种特征融合网络模块,通过将主干网络和颈部网络之间非相邻的特征信息进行跨层连接,进一步增强了模型的特征表达及融合能力;最后,提出了一种快速空间金字塔池化平均池化模块,并将其嵌入颈部网络的路径融合网络之间,以提升网络浅层定位信息传递到深层的能力。实验结果表明,改进YOLOv5s模型的mAP@0.5提升了3.1%,F1分值提升了3%,满足煤矿电力设备缺陷的检测需求且具有更高的检测精度。  相似文献   

19.
采用图像视频技术对输电线路通道实时监控,通过智能目标检测算法实现外力破坏隐患目标的识别并预警的方法精确率高,近年来被逐渐普及。但在实际环境中,由于图片背景复杂、天气变化(如雾、雨等)等因素,训练数据无法涵盖所有条件,目标识别算法泛化能力较弱,实际应用中常出现漏报和误报。基于这些问题,采用YOLOv5作为本文算法基础,通过数据扩增模拟不同天气,引用自注意力机制(CBAM)增强模型的特征提取能力,并加入多尺度域自适应网络对训练集进行对抗训练,增强模型对不同天气、不同场景的泛化能力。经实验证明,本文所用算法得到的召回率(Recall)达到了86.9%,较原算法有明显提升,平均准确率(MAP)高于原YOLOv5算法,达到了92.2%,能准确的检测出待检外破目标,减少漏检、误检。  相似文献   

20.
针对不同光照条件下的小目标交通标志检测存在的不易检测、错检等问题,提出了一种融合坐标注意力机制和双向加权特征金字塔(BiFPN)的YOLOv5s交通标志检测方法。首先,在特征提取网络中融入坐标注意力机制,提升网络对重要特征的关注程度,增加模型在不同光照条件下的检测能力;其次,在特征融合网络中使用BiFPN,提升模型的特征融合能力,改善对小目标交通标志的检测能力;最后,考虑到真实框与预测框之间的方向匹配问题,将CIoU损失函数改为SIoU损失函数,进一步提升模型的检测性能。在GTSDB数据集上进行验证,与原始模型相比,平均精度均值(mAP)提升了3.9%,推理时间为2.5 ms,能够达到实时检测的标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号