首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
为了进一步预测管线在服役条件下的氢含量以及研究氢在材料中的扩散行为,采用电化学方法,对X80管线钢在稀H_2SO_4溶液中进行阴极充氢,并采用甘油置换法对试样吸收的氢含量进行测定。试验结果显示, X80管线钢在稀H_2SO_4溶液中电化学充氢时,延长充氢时间或增加充氢电流密度,可提高管线钢吸收氢的量,充氢48 h后吸收的可扩散氢含量基本达到稳定值;随氢浓度的增加,氢扩散系数由0.35×10~(-6) cm~2/s逐渐递增到0.47×10~(-6) cm~2/s。研究表明,在电化学充氢时间一定的情况下,充氢电流密度的增加加速了氢在金属中的扩散,使材料吸收氢含量得到提高。  相似文献   

2.
运用电化学渗透技术研究了不同充氢电流密度下304不锈钢的氢扩散现象。结果表明,随着阴极充氢电流密度的增大,阳极饱和电流密度增大,进入试样内的氢含量也愈大,而氢的表观扩散系数略有减小。其原因是表面氢含量增加,氢原子之间存在交互作用,从而阻碍了氢的扩散。通过测定充氢-放氢渗氢曲线,得到了该试样的不可逆陷阱密度。  相似文献   

3.
目的 为合理选择超深含硫气井油套管材质,找到了酸性环境下氢对高强度油套管钢拉伸性能的损伤规律。方法 通过电化学充氢实验、MTS拉伸测试及断口微观形貌分析,研究3种高强度钢材的氢损伤行为,首先对材料的基本理化性能进行分析,然后采用恒电流仪进行充氢实验,最后通过MTS拉伸测试和断口形貌分析,判断充氢对钢材的拉伸力学性能的影响。结果 充氢后,3种钢材的拉伸力学性能均出现了明显降低,表明3种钢材均发生了塑性损伤,且钢材强度越大,降低幅度越大,表明材料的氢脆敏感性越强,材料的抗氢损伤性能越低。结论 采用的高强度钢氢损伤评价方法可为酸性环境下油井管材适用性评价提供技术借鉴。  相似文献   

4.
张士欢  王荣 《石油机械》2008,36(1):16-18
采用3点弯曲试样,研究了X80管线钢在0.5mol/L H2SO4溶液中,经不同电流密度充氢后的断裂特性。结果表明:X80管线钢在0.5mol/L H2SO4溶液中充氢时,材料中可扩散氢的质量分数随电流密度增大而增加。以小于12.5mA/cm2的电流密度充氢时,X80管线钢的断裂韧性随电流密度的增大而增加,当电流密度大于该值时,材料的断裂韧性随电流密度增加呈下降趋势。断口分析表明:电化学充氢试件断口仍以韧窝为主要特征,但与未充氢试件相比,韧窝的尺寸变小、变浅,且数量增多,韧窝的分布也接近均匀。  相似文献   

5.
封辉  朱兴华 《焊管》2023,(9):9-13
采用缺口圆棒拉伸试验、电化学充氢和扫描电镜观察等方法研究了不同应力三轴度下氢对X80管线钢性能影响。结果表明,对于初始应力三轴度相同的X80管线钢,电化学充氢降低了材料的缺口试样抗拉强度和断面收缩率,同时随着充氢时间延长,强度和断面收缩率降低越明显。缺口拉伸试样初始应力三轴度由1.02升高为1.25,材料的缺口试样抗拉强度和断面收缩率降低,当充氢8 h,材料抗拉强度降低幅度由1.3%升高至5.5%;充氢24 h条件下,材料抗拉强度降低幅度随应力三轴度升高,由6.6%升高至9.9%。同时随着应力三轴度不断升高,材料缺口位置应力集中程度越高,氢更容易在材料表面和内部扩散聚集,造成不可逆氢损伤,因而材料的抗拉强度降幅增大。  相似文献   

6.
基于试样高温高压釜充氢方法 ,研究了氢对 2 2 5Cr 1Mo压力容器用钢力学性能的影响。对充氢前后的试样进行了拉伸和CVN冲击试验 ,结果表明 ,氢对 2 2 5Cr 1Mo钢的拉伸力学性能和冲击韧性影响不显著。  相似文献   

7.
采用Devnathan-Stachurski双电解池技术,在饱和硫化氢的气田模拟水溶液中,测定了不同条件下L245钢的扩散系数(D)和可扩散原子氢浓度(C_0),研究了缓蚀剂CT2-19对原子氢渗透的影响。结果表明,在试验条件下,L245钢可扩散原子氢浓度(C_0)与充氢电流(I)呈线性关系,即C_0=0.63+0.12I;缓蚀剂CT2-19在试验浓度下对L245钢原子氢渗透有明显的抑制作用。  相似文献   

8.
研究了不锈钢堆焊试样在高温、高压条件下充氢后,堆焊熔合区裂纹的形核机理。研究发现,在高温、高压条件下进入试样的氢使富碳的熔合区处发生了氢腐蚀,氢与熔合区中的碳化物发生反应生成CH4。在CH4气泡和集聚的氢的共同作用下使裂纹萌生和扩展,裂纹有明显的微孔聚集特征。  相似文献   

9.
为研究热机械轧制(TMCP)工艺对X70管线钢抗氢脆性能的影响,采用两种不同的TMCP工艺参数改变钢的组织和织构,并通过电化学充氢和氢渗透试验,研究了织构和微观结构对X70管线钢抗氢致开裂(HIC)性能的影响。结果表明,TMCP并没有改变钢板的物相,不同TMCP参数的钢板均由针状铁素体、多边形铁素体及少量珠光体组成,且大多分布在晶界周围;增加氢浓度会使位错周围产生氢气氛并锁定位错,使改变塑性变形所需的应力增大,导致硬化。研究表明,冷却速率能够影响晶粒尺寸,冷却速度越高,晶粒尺寸越小,较多的精轧道次和较快的冷却速率会增加钢中可逆陷阱的数量,促使发生HIC。  相似文献   

10.
多杂质氢网络的优化   总被引:1,自引:0,他引:1  
针对炼油厂多杂质氢网络,建立了以新氢消耗量最小为目标的多杂质氢网络数学模型,约束条件包括杂质浓度约束和流量约束。数学模型根据氢气和杂质浓度来确定氢网络中的最优回用顺序,优于仅根据氢气或某一种杂质的浓度确定最优回用顺序的方法。目标函数和约束条件都是一次项的,为线性规划问题。这种方法不仅能确定多杂质氢网络的最小新氢消耗量,同时还能确定氢源和氢阱之间的匹配关系并设计出最优的氢网络。对某炼油厂的氢网络进行分析,分析结果表明,对氢网络优化后,新氢的消耗量可减少15.6%。  相似文献   

11.
针对X70管线钢管环焊接头进行12 MPa总压、0.36 MPa氢分压下的缺口拉伸试验,研究焊接接头的氢脆敏感性变化,并结合断裂韧性试验和疲劳裂纹扩展速率试验对其的断裂韧性和裂纹扩展行为进行了研究。结果表明,热影响区位置的断面收缩率下降较明显,表现出较高的氢脆敏感性;与常温常压空气中的原始数据相比,X70钢热影响区在0.36 MPa氢分压环境下的裂纹尖端张开位移(CTOD)值下降了9.6%,断裂表面未出现二次裂纹;X70钢热影响区的疲劳裂纹扩展速率与空气环境相比增加了一个数量级,说明氢气能够增大材料的疲劳裂纹扩展速率,但根据实际管道压力波动情况,在0.36 MPa氢分压条件下X70钢管的氢脆敏感性较小。  相似文献   

12.
管线钢的裂纹生长预测新模型   总被引:1,自引:0,他引:1  
邢潇  崔淦  杨紫晴  李自力 《石油学报》2019,40(6):740-747
氢脆是影响管线钢寿命最严重的破坏机理之一。传统的裂纹生长预测模型没有考虑pH值和温度等环境因素的影响,且只能考虑应力强度较大的加载循环对裂纹生长的影响,忽视了小周期加载的作用。笔者基于氢促进解离(HEDE)和氢增强局部塑性(HELP)两种主流理论,采用氢扩散的动力学模型,建立了一种新的裂纹生长预测模型,并将该模型应用于裂纹生长的预测及小周期对裂纹生长的影响的量化。研究结果表明,建立的裂纹生长模型综合考虑了氢势能、扩散系数、裂纹尖端附近的静水应力和临界加载频率等因素对管线钢裂纹扩展速率的影响,预测值与实验值吻合。利用模型可以将微观裂纹分为惰性、激活、快速增长3个状态,便于管道维护和安全评测;模型将环境因素引入管线钢寿命预测,增强了预测的普适性和准确性;并量化了油气输送中普遍存在的小周期加载对管道裂纹扩展速率的影响。  相似文献   

13.
针对在高压气相氢环境下开展的X80管线钢慢应变速率拉伸试验、断裂韧性试验、疲劳裂纹扩展速率试验,分析了不同氢分压对X80管线钢力学性能、疲劳性能及断口形貌的影响规律。研究结果表明,氢分压是影响材料氢脆和疲劳性能的重要因素,随着氢分压的增加,X80管线钢的氢脆敏感性显著增大,缺口疲劳试样的疲劳循环次数显著降低,断口韧窝间出现典型的具有小平面和撕裂棱的准解理特征脆性断裂形貌,疲劳裂纹扩展速率急剧增加,增加了管道失效风险。研究结果可为高强度输送掺氢天然气管道工程临界评估提供参考。  相似文献   

14.
脱硫制硫装置溶剂再生塔腐蚀原因分析   总被引:1,自引:0,他引:1  
通过对炼油厂脱硫制硫装置溶剂再生塔裂纹特征的分析认为,此类裂纹是湿硫化氢环境下的氢致开裂(HIC)和硫腐蚀共同作用的结果。而塔体材料中较高的杂质成分,是引起这种开裂的最主要原因。采用抗氢材料制作设备是解决问题的最根本方法。  相似文献   

15.
高强度管线钢常被用于长距离、大输量天然气管道输送,然而目前的输氢管道采用低强度管线钢,以避免氢脆的产生。为了探究大直径X80管线钢输送加压氢气的能力,对X80管线钢试样进行了拉伸、韧性、裂纹扩展和圆片破裂试验。根据试验结果,分析了输氢管道压力对试样缺陷临界尺寸的影响,从而对X80输氢管道的设计提出了建议。研究表明,在一定输送能量下,氢的运输成本可能比天然气高出数倍。此外,尽管低强度钢的氢脆敏感性更低,但使用高强度钢建造输氢管道比使用低强度钢可带来10%~40%的成本效益。  相似文献   

16.
重整抽余油组成对制氢催化剂性能的影响   总被引:1,自引:0,他引:1  
通过对原料油性质分析及轻油水蒸汽转化评价试验,对重整抽余油及其调和物用作化肥制氢原料的可行性进行了研究,试验表明该原料油作化肥制氢原料是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号