首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Glasses in the system xGd2O3·(100 − x)[TeO2·GeO2] with 0 ≤ x ≤ 50 mol% have been prepared from melt quenching method. In this paper, we investigated changes of the coordination numbers of germanium, tellurium, and gadolinium ions by investigations of FTIR, EPR, and UV–VIS spectroscopy. By analyzing the structural changes resulted from the IR spectra we found that the bending modes of [GeO4] structural units and the deformed modes of the Te–O–Te linkages produce intercalation of the [GdO n ] entities in the germanate–tellurate chain network and densification of the glasses by increasing the number of [GeO6] structural units. EPR spectra of the studied samples reveal that the gadolinium ions play a role of network former. The UV–VIS spectra show broad UV absorption bands located in the 250–350 nm region. Their intensity increase with the increasing of Gd2O3 content showing that these stronger transitions can be due to the presence of the O=Ge bonds (n–π* excitations) of [GeO5] structural units. The [GeO5] structural units are more stable thermodynamically than their analogues and the [GeO6] structural units produce the improvement of the amorphous character of these glasses.  相似文献   

2.
Raman, IR and DSC studies have been carried on the (100 − x)TeO2xWO3 (TW) glasses with 10 ≤ x ≤ 40 mol%. The Raman, IR spectra of these samples show that glass network consists of [TeO3]/[TeO3+1], [TeO4], [WO4] and [WO6] groups as basic structural units. The W ion coordination state changes from 4 to 6 when WO3 concentration increases beyond 30 mol%. Addition of WO3 oxide to the TW glasses increases the amount of lower coordination of [TeO3]/[TeO3+1] units and decreases the higher coordination [TeO4] units, Te–O–Te chains. From DSC thermogram, thermal properties such as the glass transition temperature (Tg), onset crystallization (To) of the glass systems were calculated. The compositional variation of glass transition temperature (Tg) is found to linear with an increase in WO3 content.  相似文献   

3.
Series of glass based on the (80 − x)TeO2–20ZnO–(x)Er2O3 system (0.5 mol% ≤ x ≤ 2.5 mol%) has successfully been made by melt quenching technique. The optical properties of glass have been investigated by means of IR and Raman spectroscopy. It is observed that as the Er2O3 content is being increased, the sharp IR absorption peaks are consistently shifted from 650 to 672 cm−1 while the Raman shift intensity around 640–670 cm−1 is decreases but increases around 720–740 cm−1. It is found out that both phenomenons are related to the structural changes between the stretching vibration mode of TeO4 tbp and TeO3 tp, and bending vibration mode of Te–O bonds in the glass linkages.  相似文献   

4.
In order to further elucidate the local structure of ternary xGd2O3(100 − x)[0.7TeO2 · 0.3V2O5] glasses with x = 0, 5, 10, 15, 20 mol%, FTIR spectroscopy, XRD diffraction and density measurement were performed. FTIR and density data show that by increasing the gadolinium ions content of the samples the excess of oxygen may be accommodated by the inter-conversion of some [VO4] into [VO5] structural units and of [TeO3] into [TeO4] units. The composition of the heat-treated glasses was found to consist mainly of the Te2V2O9 crystalline phase. Varying x between 15 and 20 mol% Gd2O3 produces structural modification having as result an increase of the glass network polymerization degree. Accordingly, the gadolinium ions play a particular role related to the improvement of the homogeneity of the glasses and in accommodating the glass network with the excess of oxygen.  相似文献   

5.
Barium vanadophosphate glasses, having composition 50BaO–xV2O5–(50 − x)P2O5, (x = 0–50 mol%), were prepared by conventional melt quench method. Density, molar volume and glass transition temperature (Tg) were measured as a function of V2O5 content. Structural investigation was done using XPS and FTIR spectroscopy. First, substitution of the P2O5 by the V2O5 in the metaphosphate 50BaO–50P2O5 glass increases the density and Tg and decreases the molar volume. When the amount of V2O5 increases, all these properties show a reverse trend. XPS measurement found in the O1s, P2p, and V2p core level spectra indicate the presence of primarily P–O–P, P–O–V and V–O–V structural bonds, the asymmetry in the P 2p spectra indeed arises from the spin-orbit splitting of P 2p core level, and more than one valence state of V ions being present. IR spectroscopy reveals the depolymerization of the phosphate glass network by systematic conversion of metaphosphate chains into pyrophosphate groups and then orthophosphate groups. Even though metaphosphate to pyrophosphate conversion is taking place due to breaking of P–O–P linkages, formation of P–O–V and P–O–Ba linkages provide cross linking between short P-structural units, which make the glass network more rigid. Above 10–20 mol% V2O5 content, network is highly depolymerized due to the formation of orthophosphate units and V–O–V bridge bonds, resulting in poor cross-linking, making the glass network less rigid.  相似文献   

6.
In this work we report on a vibrational spectroscopic, X-ray diffraction, and density measurement study of the structural properties of the ternary xGd2O3(100 − x)[7TeO2·3V2O5] systems for various x values up to 70 mol%. Structural changes, as recognized by analyzing band shapes of X-ray diffraction and IR spectra, revealed that Gd2O3 causes a higher extent of network polymerization as far as x ≤ 40 mol%, while for x between 40 and 50 mol% showed a drastic structural modification which lead to the apparition of the GdVO4 crystalline phase.  相似文献   

7.
8.
xV2O5·(100 − x)[0.7P2O5·0.3CaO] glass system was obtained for 0 ≤ x ≤ 35 mol% V2O5. In order to obtain information regarding their structure, several techniques such as X-Ray diffraction, FT-IR, and EPR spectroscopies were used. X-Ray diffraction patterns of investigated samples are characteristic of vitreous solids. FT-IR spectra of 0.7P2O5·0.3CaO glass matrix and its deconvolution show the presence in the glass structure of all structural units characteristic to P2O5. Their number are increasing for x ≤ 3 mol% V2O5 then, for higher content of vanadium ions, the number of phosphate structural units are decreasing leading to a depolymerization of the structure. The structural units characteristic to V2O5 were not evidenced but their contribution to the glass structure can be clearly observed. EPR revealed a well resolved hyperfine structure (hfs) typical for vanadyl ions in a C4v symmetry for x ≤ 3 mol% V2O5. For 5 < x < 20 mol% V2O5 the spectra show a superposition of two EPR signals one due to a hfs structure and another consisting of a broad line typical for associated V4+–V4+ ions. For x ≥ 20 mol% V2O5 only the broad line can be observed. The composition dependence of the line-width suggests the presence of dipole–dipole interaction between vanadium ions up to x ≤ 5 mol% V2O5 and superexchange interactions between vanadium ions for x > 5 mol% V2O5.  相似文献   

9.
X-ray diffraction (XRD), Fourier transform infrared (FTIR) and electron paramagnetic resonance (EPR) spectroscopies have been employed to investigate the xGd2O3 · (95 − x)[2Bi2O3 · B2O3] · 5V2O5 glass system, with 0 ≤ x ≤ 25 mol%. The glass samples have been prepared by melting at 1,100 °C for 10 min followed by rapid cooling at room temperature. The structure of samples was analyzed by means of XRD. The pattern obtained did not reveal any crystalline phase in the samples up to 25 mol%. FTIR spectroscopy data suggest that the gadolinium ions play the network modifier role in the studied glasses. These data show that the glass network consists of BiO3, BiO6, BO3, BO4, and VO4 structural units. The FTIR data show that a conversion among these units takes place and this process mainly depends on the Gd2O3 content. The EPR spectra of the studied glasses exhibit three important features with effective g-values of ≈5.9, 2.85, 2.0 and a weaker feature at g eff ≈ 4.8. For low Gd2O3 contents (x ≤ 10 mol%), the EPR spectra have the typical ‘‘U’’-type shape. For higher contents of Gd2O3 (x > 10 mol%), the spectral features are broadened and finally are dominated by a single broad absorption line located at g eff ≈ 2.0. This broad EPR line is associated to the Gd3+ ions present predominantly as clustered species.  相似文献   

10.
X-ray diffraction (XRD), electron paramagnetic resonance (EPR), and magnetic susceptibility measurements have been employed to investigate the samples from the (Gd2O3) x ·(B2O3)(60−x)·(ZnO)40 (0 ≤ x ≤ 20 mol%) system. The XRD pattern for the prepared samples shows that the vitreous phase is present only for x ≤ 15 mol%. For the samples containing 20 mol% Gd2O3 the presence of a unique crystalline phase, GdBO3, embedded in a vitreous matrix was evidenced. In this case the XRD patterns show the presence of nanometer sized crystals (64 nm) in a glassy matrix. The EPR spectra of the studied samples exhibit three important features with effective g-values of ≈6, 2.8, 2.0 and a weaker feature at g ≈ 4.8. For low Gd2O3 contents (x < 3 mol%), the EPR spectra have the typical ‘‘U’’-type shape. For higher contents of Gd2O3 (x ≥ 3 mol%), the spectral features are broadened and finally are dominated by a single broad absorption line located at g ≈ 2.0. This broad EPR line is associated to the Gd3+ ions present predominantly as clustered species. Magnetic susceptibility data show that for x > 1 mol% the Gd3+ ions are present not only as isolated species but also as species coupled through antiferromagnetic exchange interactions.  相似文献   

11.
X-ray diffraction and FTIR spectroscopy measurements have been employed to investigate the xGd2O3 · (100 − x)[2Bi2O3 · B2O3] glass ceramics system, with 0  ≤ x ≤ 20 mol%. Heat treatment of glass samples at 625 °C for 24 h led to the formation of two crystalline phases. One crystalline phase is for the sample without gadolinium ions which belongs to the cubic system and another one is for the sample containing 20 mol% Gd2O3 which is orthorhombic with two unit cell parameters very close to each other. Between x = 0 mol% and x = 20 mol% there is a mixture of these crystalline phases. FTIR spectroscopy data suggest that the gadolinium ions play the network modifier role in the studied glasses. These data show that the glass structure consists of the BiO3, BiO6, BO3, and BO4 structural units, and the conversion among these units mainly depends on the Gd2O3 content.  相似文献   

12.
Glasses from xFe2O3 · (100 − x)[P2O5 · TeO2] system, with 0 ≤ x ≤ 50 mol%, were investigated by X-ray diffraction, FT-IR and EPR spectroscopies. The XRD patterns show a vitreous state of studied samples for x ≤ 35 mol% Fe2O3. The FT-IR spectrum of the P2O5 · TeO2 glass matrix reveals a structure formed from PO4, TeO4 and TeO3 units. The addition and the increasing of Fe2O3 content modify progressively the structure of the glass matrix. The local structure in the investigated glasses was revealed by means of EPR using Fe3+ (3d5; 6S5/2) ions as paramagnetic probes. The EPR spectra present two resonance absorption lines characteristic to Fe3+ ions centred at geff ≈ 2.0, for 0.5 ≤ x ≤ 35 mol% and geff ≈ 4.3, for 0.5 ≤ x ≤ 5 mol%. The variation of the EPR parameters, the intensity and line-width of these absorption lines, with iron ions composition has been followed.  相似文献   

13.
This preliminary study focuses on the effect of adding SrO to a Ti-containing quaternary phosphate glass system denoted by P2O5–Na2O–CaO–TiO2. The following four different glass compositions were manufactured: 0.5P2O5–0.17Na2O–0.03TiO2–(0.3−x)CaO–xSrO where x = 0, 0.01, 0.03 and 0.05. Structural characterisation revealed glass transition temperatures in the range 427–437°C and the presence of sodium calcium phosphate as the dominant phase in all the glasses. Degradation and ion release studies conducted over a 15-day period revealed that the Sr-containing glasses showed significantly higher degradation and ion release rates than the Sr-free glass. Cytocompatibility studies performed over a 7-day period using MG63 cells showed that the addition of 5 mol% SrO yielded glasses with cell viability nearly equivalent to that observed for quaternary TiO2 glasses.  相似文献   

14.
Mixed lithium–zinc borophosphate glasses were prepared and studied in three compositional series xLi2O–(50−x)ZnO–50P2O5, xLi2O–(50−x)ZnO–10B2O3–40P2O5 and xLi2O–(50−x)ZnO–20B2O3–30P2O5 with x = 0, 10, 20, 30, 40 and 50 mol% Li2O. The obtained glasses were characterized by the measurements of the density (ρ), molar volume (V M), glass transition temperature (T g) and thermal expansion coefficient (α). For the investigation of structural changes 11B and 31P MAS NMR and Raman spectroscopy were applied. The replacement of zinc by lithium in borophosphate glasses slightly decreases V M and T g, while α increases. In Li–Zn metaphosphate glasses the compositional dependence of T g reveals a minimum, while at the borophosphate series T g decreases monotonously with increasing Li2O content. Chemical stability of Li–Zn borophosphate glasses is very good for glasses with x = 030 mol% Li2O. Spectral studies showed in the glass series with 10 mol% B2O3 only the presence of BO4 sites. In the glasses with 20 mol% B2O3 the presence of BO3 and two BO4 sites was revealed in ZnO-rich glasses and only one BO4 site in Li2O-rich glasses; the number of BO3 groups decreases with increasing Li2O content which is ascribed to the formation of P–O–Zn covalent bonds in ZnO-rich glasses.  相似文献   

15.
Er3+-doped tellurite glasses with molar compositions of 75TeO2–20ZnO–(5 − x) Na2O–xEr2O3 (x = 0, 0.5, 1, 2, 3, and 4 mol%) have been elaborated from the melt-quenching method. The effects of Er2O3 concentration on the thermal stability and optical properties of tellurite glasses have been discussed. From the differential scanning calorimetry (DSC) profile, the glass transition temperature T g, and crystallization onset temperature T x are estimated. The thermal stability factor, defined as ∆T = T x − T g, was higher than 100 °C. It suggests that tellurite glass exhibits a good thermal stability and consequently is suitable to be a potential candidate for fiber drawing. Furthermore, the stability factor increases with Er2O3 concentration up to 2 mol% then presents a continue decrease suggesting of beginning of crystallization of highly doped tellurite glasses. The refractive index and extinction coefficient data were obtained by analyzing the experimental spectra of tanΨ and cos∆ measured by spectroscopic ellipsometry (SE). The complex dielectric functions (ε = ε1 + iε2) of the samples were estimated from regression analysis. The fundamental absorption edge has been identified from the optical absorption spectra and was analyzed in terms of the theory proposed by Davis and Mott. The values of optical band gap for direct and indirect allowed transitions have been determined. An important decrease of the optical band gap was found after Er doping. It was assigned to structural changes induced from the formation of non-bridging oxygen. The absorption coefficient just below the absorption edge varies exponentially with photon energy indicating the presence of Urbach’s tail. The origin of the Urbach energy is associated with the phonon-assisted indirect transitions.  相似文献   

16.
A glass-forming domain is found and studied within Bi2O3–Sb2O3–TeO2 system. The glasses composition were obtained in pseudo-binary xSbO1.5, (1−x)TeO2 for 0.05 ≤ x ≤ 0.20. The constitution of glasses in the system Sb2O3–TeO2 was investigated by DSC, Raman, and Infrared spectroscopy. The influence of a gradual addition of the modifier oxides on the coordination geometry of tellurium atoms has been elucidated based Infrared and Raman studies and showed the transition of TeO4, TeO3+1, and TeO3 units with increasing Sb2O3 content. XRD results reveal the presence of three crystalline: γ-TeO2, α-TeO2, and SbTe3O8 phases during the crystallization process. The density of glasses has been measured. The investigation in the ternary system by the solid state reaction using XRD reveals the existence of a solid solution Bi1−x Sb1−x Te2x O4 isotopic to BiSbO4 with 0 ≤ x ≤ 0.1.  相似文献   

17.
The glass transition temperature was studied via differential thermal analysis of glasses in the system (100 − x)TeO2–5Bi2O3xZnO and (100 − x)TeO2–10Bi2O3xZnO where x = 15, 20, 25 in mol%. The crystallization behavior and microstructure development of the 0.7TeO2/0.1Bi2O3/0.2ZnO glass during annealing were investigated by non-isothermal differential thermal analysis (DTA), X-ray diffractometry, and transmission electron microscopy. The glass transition temperature, crystallization temperature, and the nature of crystalline phases formed were determined. From the heating rate dependence of the glass transition temperature, the glass transition activation energy was derived. From variation of DTA peak maximum temperature with heating rate, the activation energies of crystallization were calculated to be 305.8 and 197 kJ mol−1 for first and second crystallization exotherms, respectively. Moreover, synthesized crystalline Bi3.2Te0.8O6.4, Bi2Te4O11, and Zn2Te3O8 were investigated. In addition, the change in particle size with increasing annealing time was observed by high-polarized optical microscope.  相似文献   

18.
(10Li2O–20GeO2–30ZnO–(40-x)Bi2O3xFe2O3 where x = 0.0, 3, 6, and 9 mol%) glasses were prepared. A number of studies, viz. density, differential thermal analysis, FT-IR spectra, DC and AC conductivities, and dielectric properties (constant ε′, loss tan δ, AC conductivity, σ ac, over a wide range of frequency and temperature) of these glasses were carried out as a function of iron ion concentration. The analysis of the results indicate that, the density and molar volume decrease with an increasing of iron content indicates structural changes of the glass matrix. The glass transition temperature T g and onset of crystallization temperature T x increase with the variation of concentration of Fe2O3 referred to the growth in the network connectivity in this concentration range, while glass-forming ability parameter ΔT decrease with increase Fe2O3 content, indicates an increasing concentration of iron ions that take part in the network-modifying positions. The FT-IR spectra evidenced that the main structural units are BiO3, BiO6, ZnO4, GeO4, and GeO6. The structural changes observed by varying the Fe2O3 content in these glasses and evidenced by FTIR investigation suggest that the iron ions play a network modifier role in these glasses while Bi2O3, GeO2, and ZnO play the role of network formers. The temperature dependence of DC and AC conductivities at different frequencies was analyzed using Mott’s small polaron hopping model and, the high temperature activation energies have been estimated and discussed. The dielectric constant and dielectric loss increased with increase in temperature and Fe2O3 content.  相似文献   

19.
In this paper, we have examined and analyzed the effects of systematic intercalation of the lead ions on vanadate–tellurate glass ceramics with interesting results. The structural properties of the lead–vanadate–tellurate glass ceramics of compositions xPbO·(100 − x)[6TeO2·4V2O5], x = 0 − 100 mol%, are reported for the first time. It has been shown by X-ray diffraction that single-phase homogeneous glasses with a random network structure can be obtained in this system. Among these unconventional lead–vanadate–tellurate glass ceramics, we found that network formers are good host material for lead ions and are capable to intercalate a variety of species such as Te2V2 5+O9, Pb3(V5+O4)2, Pb2V2 5+O7, and V2O5-rich amorphous phase. On the other hand, these glass ceramics contain V4+ and V5+ ions necessary for the electrical conduction. Based on these experimental results, we propose that the V4+=O bonds are created by two different mechanisms: the first of reduction of V5+ ions to V4+ ions and thus of creation of V4+=O bonds.  相似文献   

20.
Glass samples of the system (15Li2O–30ZnO–10BaO–(45 − x)B2O3xCuO where x = 0, 5, 10 and 15 mol%) were prepared by using the melt quenching technique. A number of studies, viz. density, differential thermal analysis, FT-IR spectra, a.c. conductivity and dielectric properties (constant εφ, loss tan δ, a.c. conductivity, σac, over a wide range of frequency and temperature) of these glasses were carried out as a function of copper ion concentration. The analysis of the results indicate that the density increases while molar volume decreases with increasing of copper content indicates structural changes of the glass matrix. The glass transition temperature, T g, and crystallization temperature, T c, increase with the variation of concentration of CuO referred to the growth in the network connectivity in this concentration range, while glass-forming ability parameter (T c − T g) decreases with increasing CuO content, indicates an increasing concentration of copper ions that take part in the network-modifying positions. The FT-IR spectra evidenced that the main structural units are BO3, BO4, and ZnO4. The structural changes observed by varying the CuO content in these glasses and evidenced by FTIR investigation suggest that the CuO plays a network modifier role in these glasses while ZnO plays the role of network formers. The dielectric constant decreased with increase in temperature and CuO content. The variation of a.c. conductivity with the concentration of CuO passes through a maximum at 5 mol%. In the high temperature region, the a.c. conduction seems to be connected with the mixed conduction viz., electronic conduction and ionic conduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号