首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
CO2吞吐是一种提高致密油藏采收率的有效方法,然而由于注入的CO2与地层水接触形成的碳酸与岩石矿物发生了溶蚀作用,从而改变了储层的流动特性。为了探讨碳酸溶蚀对储层流动特征的影响,以鄂尔多斯盆地三叠系延长组长6段野外露头致密砂岩为研究对象,开展了岩心流动实验,通过测量CO2在地层水中的溶解度,对比了碳酸溶蚀前后致密砂岩的孔隙度、可动孔喉下限、液相渗透率、矿物组成和微观形貌。结果表明:溶蚀作用提高了孔隙度和液相渗透率,使流体流动能力增强;溶蚀后致密砂岩的可动孔喉下限减小,降低了束缚水饱和度;方解石、白云石和长石是主要的溶蚀矿物,溶蚀后岩心的溶蚀孔明显增多;压力越大CO2在地层水中的溶解度越大,碳酸的酸性越强,矿物溶蚀程度越大;温度越高,溶蚀作用越弱。研究成果明确了碳酸溶蚀作用对致密砂岩储层流动特征的影响规律,为致密油藏CO2吞吐技术应用提供借鉴。  相似文献   

2.
饱和CO2地层水驱过程中的水-岩相互作用实验   总被引:1,自引:0,他引:1  
于志超  杨思玉  刘立  李实  杨永智 《石油学报》2012,33(6):1032-1042
为了研究CO2注入后储层岩性和物性的变化情况,利用室内岩心驱替装置,模拟了地层条件下(100℃,24MPa)饱和CO2地层水驱过程中的水-岩相互作用,并对CO2注入后,组成储层岩石的矿物溶蚀、溶解和沉淀情况以及渗透率变化的原因进行了研究。通过对实验前后反应液离子成分变化、岩心扫描电镜和全岩X-射线衍射(XRD)资料的分析表明:实验后砂岩岩心中的碳酸盐矿物出现明显的溶解现象,且方解石溶解程度最高,片钠铝石次之,铁白云石最低;反应液中K+质量浓度的变化主要是由碎屑钾长石颗粒溶蚀造成的;实验后有少量的高岭石和中间产物生成,其中间产物的成分主要为C、O、Na、Cl、Al和Si,并有向碳酸盐矿物转变的趋势;新生成的高岭石、中间产物和由碳酸盐胶结物溶解释放出的黏土颗粒一起运移至孔喉,从而堵塞孔隙,降低了岩心渗透率。通过以上实验再现了CO2注入后,短时期内储层岩石中长石和碳酸盐类矿物的溶蚀和溶解过程以及新矿物沉淀情况,并且揭示了储层渗透率变化的原因,从而为CO2的地下捕获机制提供了地球化学依据。  相似文献   

3.
CO2驱酸化溶蚀作用对储层会产生一定程度的伤害。为揭示这种伤害作用对原油采收率的影响机理,选取6块同级别渗透率的岩心样品,在地层温度、压力条件下进行物理模拟实验,通过核磁共振技术评价酸化溶蚀作用对原油采收率的影响机理。实验结果显示,驱替产出流体的pH值低于原始地层水,且通过离子浓度变化发现驱替过程中有长石和碳酸盐矿物发生溶蚀;岩心的渗透率在驱替结束后出现一定程度降低,且反应时间越长,渗透率的降幅越大;岩心样品的最终采收率与反应时间呈反比,反应时间为240 h的岩心样品相比反应时间为0 h的岩心样品,其最终采收率降幅达到27.31%。综合分析认为,CO2驱长时间的酸化溶蚀反应产物及脱落的黏土颗粒会堵塞孔喉,导致储层渗流能力下降,进而影响CO2驱的驱油效率及最终采收率。  相似文献   

4.
二氧化碳泡沫压裂技术在低渗透低压气藏中的应用   总被引:9,自引:0,他引:9  
针对低渗透、低压气藏压裂改造中压裂液返排困难的问题,研究了CO2泡沫压裂技术,分析了CO2泡沫压裂过程中井筒和储层温度场变化对CO2液气转化的影响,对提高CO2泡沫压裂液的流变性、内相恒定与工艺措施等进行了室内研究.现场试验表明,CO2泡沫压裂技术能减少进入地层的水基压裂液量,提供地层液体返排的能量,达到了压裂液自喷、快速、多排的目的,从而降低了压裂液对储层的二次伤害,提高了低渗透、低压气藏的压裂效果.  相似文献   

5.
为了评价页岩油储层CO2吞吐驱油效果及不同尺度孔喉下原油可动性,选取延长油田志丹油区长7储层天然岩心,基于高温高压长岩心CO2吞吐实验和短岩心剩余油在线核磁共振实验,在评价驱油效果的基础上,分析不同测压点CO2混相状态及驱替规律,对比纳米、微米级孔喉尺度下混相吞吐与非混相吞吐效果,评价页岩油储层不同尺度空间原油可动性。研究表明:CO2非混相吞吐波及效果较差,岩心内部压力增加不明显,压力波及范围小;CO2混相吞吐波及范围广,压力梯度大,单位时间产油量高,驱油效果明显好于CO2非混相吞吐,在注入相同孔隙体积倍数条件下,采收率较CO2非混相吞吐提高8.24个百分点;CO2混相吞吐前2周期生产压差大,混相吞吐区间距离长,混相驱特征明显;在整个岩样孔喉中,微米级孔隙占比低,纳米级、亚微米级孔隙是原油主要贡献者。该研究成果可为页岩储层补充地层能量、提高采收率提供重要参考。  相似文献   

6.
为明确致密砂岩储层中石英、伊利石和绿泥石对CO2驱油效率及孔隙动用特征的影响,分别选取以石英、伊利石、绿泥石为主要矿物类型的3种岩心,开展核磁共振扫描分析下的CO2驱替实验,定量评价每种类型岩心在不同CO2注入压力下小孔隙、大孔隙的原油采出程度,并分析了产出水中离子质量浓度变化。结果表明:目标储层以石英型和黏土矿物型为主,其中黏土矿物以伊利石和绿泥石为主;石英型岩心的CO2驱替过程中,当CO2注入压力小于等于最小混相压力时,大孔隙的原油动用程度大于小孔隙,当CO2注入压力大于最小混相压力时,小孔隙的原油动用程度增加,而大孔隙的原油动用程度下降;伊利石型岩心大、小孔隙的原油采出程度最大,驱油效果最好,绿泥石型岩心大孔隙的原油采出程度很高,小孔隙的原油采出程度非常低,整体驱油效果最差;随着CO2注入压力的增加,石英型岩心产出水中金属离子质量浓度大幅增加,伊利石型、绿泥石型岩心溶蚀后的钙、镁等离子产生沉淀,且绿泥石型岩心沉淀量最大,最易堵塞...  相似文献   

7.
针对南堡凹陷高5断块V油组常规水力压裂开发效果不佳的问题,通过开展PVT和岩心混相吞吐实验,明确CO2混相压裂吞吐提高采收率作用机理,并利用矿场试验进一步验证技术有效性。研究结果表明:在目前地层压力(33.00 MPa)下,CO2与原油可实现混相,且注入摩尔分数为60%的CO2后原油体积膨胀41.01%,黏度降低33.08%,密度增加7.28%,表明CO2对原油具有较好的增溶、膨胀、降黏作用;CO2混相压裂吞吐采出程度可达到60%以上。试验井CO2混相压裂吞吐后稳定生产26个月,累计增油2 200 t,原油重质组分得到了有效动用。该研究为低渗及致密油藏效益开发提供了有效技术途径。  相似文献   

8.
页岩油注CO2吞吐提高采收率技术处于探索阶段,目前面临着CO2与页岩储层及流体相互作用机制不明确、数值模拟技术不成熟、缺乏规模注采及低成本回收工艺等技术难题。为探索页岩油注CO2提高采收率主控机理,以苏北盆地溱潼凹陷古近系阜宁组二段页岩油为对象开展了超临界CO2水岩反应实验,分析了高温高压条件下页岩矿物溶蚀作用及其对孔隙度和渗透率的影响,并通过注CO2恒质膨胀实验、最小混相压力测试评价了地层超压条件下注CO2后原油高压物性变化特征,并在此基础上开展考虑多因素数值模拟研究优化了设计注入参数,最终通过矿场试验验证了技术可行性。研究结果表明:(1) CO2水岩反应以碳酸质矿物溶蚀占主导,长英质矿物部分溶解,生成中大孔隙;(2)在地层原油中注入适量的CO2,显著萃取了原油中间烃组分,原油黏度从5.151 mPa·s下降到1.250 mPa·s,且CO2首先萃取轻烃组分,随生产时间增加萃取组分逐渐变为...  相似文献   

9.
鄂尔多斯盆地红河油田地层压力系数低,天然能量开发递减较快、采收率低,难以实现有效开发。而长8储层裂缝较发育,注水补充能量开发存在油井水窜严重、见效低等问题。为了解决补充能量的问题,进行红河油田长8储层注CO2提高采收率的可行性实验研究,室内开展了PVT实验、最小混相压力实验和裂缝岩心CO2驱油实验,并评价了CO2吞吐的开发效果。实验结果表明:红河油田原油注入CO2后体积增大,具有较强的膨胀能力。而且随着混合体系压力逐渐增大,原油与CO2能产生明显的相互扩散传质作用。长细管混相仪法测得红河油田原油与CO2的混相压力为17.34 MPa,低于红河油田原始地层压力,注CO2驱油能达到混相条件。通过多轮次CO2吞吐实验,在弹性开发采收率4.04%的基础上可提高采收率3.14%。综合室内可行性评价实验结果看,红河油田长8储层注CO2补充能量开发具有可行性。  相似文献   

10.
查明富CO2流体对储-盖系统的改造作用,对于研究CO2活动与油气成藏效应、CO2储存和CO2驱油提高采收率有着重要意义。选取下扬子苏北盆地黄桥地区和句容地区的二叠系龙潭组储层和大隆组盖层组合,分别作为有无CO2流体活动的对比研究对象。通过薄片观察统计、矿物成分和碳同位素分析,查明了两个地区储层的异同点。黄桥地区储层的自生矿物以石英次生加大边和高岭石充填为主,发育少量片钠铝石,句容地区不发育片钠铝石,且次生石英含量不高;黄桥地区储层孔隙度明显高于句容地区,薄片下观察到大量长石溶蚀孔隙,偶见长石溶蚀孔内生长片钠铝石雏晶,是CO2与长石发生水岩相互作用的直接证据;黄桥地区和句容地区盖层均为黑色块状泥岩,黄桥地区盖层发育微裂隙,但裂隙均已再充填方解石脉,碳同位素数据表明方解石脉为富CO2流体活动结果,在句容地区泥岩盖层中未见大量裂隙和矿物脉。综合研究分析表明,富CO2流体充注引起储层砂岩中长石大量溶蚀,增加了孔隙空间,片钠铝石、次生石英和高岭石自生矿物组合序列沉淀,同时富CO2流体的连续活动导致泥岩盖层发生方解石沉淀,充填盖层裂缝,有利于提高盖层的封盖能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号