首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
为了研究滇东-黔西地区的多层叠置含气系统煤层气合采的产气特征,以4层合采方式为研究背景,利用大型多场耦合煤层气开采物理模拟试验系统展开3组不同层间压差条件下的定产煤层气合采物理模拟试验,研究了4个煤层在煤层气合采过程中的储层压力、瞬时产量、产能贡献率等参数动态演化规律。研究结果表明:在合采过程中,1号煤层的储层压力在11.5 min上升至1.1 MPa,出现明显的压力上升,这是由于煤层之间的储层压力差过大会形成层间干扰现象,使低气压煤层的储层压力上升,但该现象主要发生在合采初期,并随着合采时间的延长而减弱;在11.25 L/min的定产生产条件下,1-4号煤层的初始瞬时产量分别为-23.4、-1.6、9.3、18.3 L/min,因此当单层产气能力高于定产值时,高气压煤层的部分产气量通过井筒汇入低气压煤层,形成倒灌现象,且层间压差越大,倒灌的气量越大;在0.2、0.3和0.5 MPa的3种层间压差条件下,1号煤层在第10 min的产气贡献率分别为-3.2%、-10.4%、-16.9%,所以在合采初期,层间压差越大,对低气压煤层的产气的抑制作用越大;在稳产期内,不同储层压力的煤层产气呈现为一种"动态平衡"的产气特征,即当相对高气压煤层的产气能力不足时,相对低气压煤层的产气能力开始增加,从而维持稳定产气。  相似文献   

2.
项目组以沁水盆地、鄂尔多斯盆地等为研究对象,取得了煤层气高产井区地质控制模式、煤储层物性动态规律与数学模型、多层叠置含煤层气系统、煤层气开发解吸阶段数值描述等4项理论认识;形成了煤层水及孔隙低场核磁共振表征、煤层气有利建产区地质综合评价、多层叠置含气系统煤层气递进排采地质设计、煤储层开发地质动态评价等4项评价技术;研发了多煤层多场耦合煤层气开采物理模拟试验系统、煤层气直井流体参数探测仪、煤层含气量天然源超低频电磁探测仪等3套装备,初步形成了适合于研究区地质条件的煤层气开发地质保障技术体系框架,为满足煤层气大规模开发需求提供了参考。  相似文献   

3.
利用大型多场耦合煤层气开采物理模拟试验系统,开展了近距离煤层群瓦斯抽采试验,分析了抽采过程中本煤层和邻近层瓦斯压力演化、煤层变形演化以及瓦斯压力与煤层变形耦合关系。结果表明:抽采过程中本煤层瓦斯压力呈先快后慢的下降趋势,距钻孔中心位置越近,瓦斯压降速率越大;邻近层瓦斯压力则呈近似线性下降,瓦斯压降空间差异性相较本煤层不明显;随抽采进行,本煤层变形增长速率逐渐减小;邻近层变形演化规律与本煤层基本一致,但相同时刻邻近层变形相较本煤层更小;本煤层与邻近层压降均随体积应变增大而增大,但本煤层压降与体积应变耦合关系为线性正相关关系,而邻近层压降与体积应变耦合关系为正指数函数关系。  相似文献   

4.
利用自主研发的多场耦合煤层气开采物理模拟试验系统,开展了不同地应力水平下抽采瓦斯的物理模拟试验,对抽采瓦斯过程中煤层瓦斯压力演化规律进行了探讨。结果表明:① 在抽采瓦斯过程中,煤层瓦斯压力在初期降低较快后期降低缓慢,并且距钻孔越近,瓦斯压力下降速度越快,而与距钻孔出口的距离无关;② 在与抽采钻孔垂直的断面瓦斯压力场中,等压线以钻孔为中心呈现圆环形分布,在与抽采钻孔平行的纵面和层面瓦斯压力场中,等压线则以钻孔为对称轴呈现漏斗形分布,且距钻孔及钻孔出口越近瓦斯流速越大;③ 地应力的增加降低了煤层渗透率,阻碍了瓦斯的运移,使抽采过程中瓦斯压力的降低速度变慢,瓦斯流速减小。  相似文献   

5.
利用自主研发的“多场耦合煤层气开采物理模拟试验系统”,开展了煤层非均布应力状态下不同钻孔位置条件的煤层瓦斯抽采物理模拟试验,以探讨抽采过程中的瓦斯流动特性及钻孔位置的影响规律和作用机制。对结果进行分析表明:抽采过程中瓦斯压力降低先快后慢,变化形式符合weibull分布函数,温度变化趋势与瓦斯压力基本一致;与钻孔距离越近,瓦斯压力和温度降低越快,瓦斯压力梯度也越大,相反,瓦斯压力梯度则越小;应力集中区对煤层瓦斯流动有一定的屏障作用,不利于气体流动和抽采效率的提高,而渗透系数较高的卸压区有利于瓦斯气体的流动;对拟合所得的Weibull参数分析发现,钻孔位置对瓦斯抽采效率有明显影响,卸压区抽采时位置参数和尺度参数都相对较小,标示着较大的瓦斯压力降低速度和较好地抽采效果,且抽采量也是最大,因此认为采用单一钻孔时,卸压区抽采是相对优化的方式,研究结果对煤层瓦斯抽采提供了参考。  相似文献   

6.
多层叠置煤层气系统合采方式及其优化   总被引:1,自引:0,他引:1       下载免费PDF全文
针对"多层叠置煤层气系统"这一特殊煤层气成藏模式,自主研发了多层叠置煤层气系统合采试验装置,并取得:(1)开展了储层气压分别为1.0,1.4,1.8和2.2 MPa条件下4层叠置煤层气系统常规合采试验,发现在合采过程中,气体由高气压煤层通过合采井筒流向低气压煤层,抑制了低气压煤层气体的产出,不利于煤层气的合采;(2)通过优化不同煤层产气时间开展了递进合采试验,有效避免不同煤层之间发生气体倒灌现象,使得最低储层气压煤层采收率和整体采收率分别提高了6.5%和1.3%;(3)递进合采能降低高储层气压煤层产能贡献率同时提高低储层气压煤层产能贡献率,使得产能分配更加合理;(4)叠置煤层整体差异系数呈先升后降的变化趋势,表明优化前后两种合采方式差异随着合采的进行处于动态变化之中,在合采中期达到最大,在合采后期略有下降。  相似文献   

7.
为了研究多压力系统合采生产特征,以叠置含气系统这一特殊气藏模式为工程背景,利用自主研发的多场耦合叠置含气系统煤层气开采物理模拟试验系统开展了常规合采、定压合采和定产合采3种模式的物理模拟试验研究,探讨了不同合采模式下叠置含气系统煤层气开采产气特征及其流体流动规律,阐述了多压力系统煤层气合采过程中的流体扰动效应机制。结果表明:(1)对井筒出口施加限定条件,较低初始能量煤储层易遭受压力扰动,导致近井地带出现压力上升的现象,但该压力扰动主要存在合采初期阶段,而后逐渐消弱;(2)压力扰动会改变煤储层内势能的空间分布形态,尤其是初始流体能量较低的煤储层,即在近井地带形成一个高势带,导致煤储层内流体在高势带的影响下而改变其原有的流动特征;(3)定压合采会致使压力存在差异的各个煤储层与井筒之间形成一种"动态压力平衡"关系,在压力势能的作用下,来自高初始流体能量煤储层的流体向低初始流体能量煤储层流动,而定产合采将整个合采过程划分为稳产期和衰减期,在稳产期内,各煤储层的产气能力在井口定产的作用下重新分配,形成一种"动态分配"产气模式,即当流体能量高的煤储层产气能力超越定产值时,部分来自初始流体能量高煤储层的流体向初始流体能量低煤储层反向注入,加剧合采流体扰动效应。  相似文献   

8.
低渗透煤层瓦斯解吸渗流规律的试验研究   总被引:2,自引:0,他引:2  
如何提高煤层气采收率是目前煤层气开发的重点课题。通过实验揭示了温度是影响煤层气渗透率及解吸渗流量的关键因素之一,得到了非等温条件下煤层气解吸-渗流规律。实验通过自制的温控三轴煤层气解吸渗透仪进行规律探究。经数据拟合,分析得出:不同温度条件下,渗透率随孔隙压力的增加以指数形式递增;在相同围压、轴压和孔隙压力条件下,等温解吸时,煤样瓦斯渗流量随温度的增加而呈现指数递减规律;升温解吸时,解吸量比低温下的渗流量增加,孔隙压力越大,渗流量增加越明显。根据试验结果,认为在注热开采煤层气时,通过间歇式注热(蒸汽吞吐)使煤层温度梯度不断变化,煤层发生升温解吸,有利于煤层气的产出。对低渗透煤层瓦斯开采提出新的思路。  相似文献   

9.
为分析煤层气地面预抽效果影响规律,采用Comsol数值模拟软件,对在不同工况的地应力和储层压力条件下煤层气地面预抽进行数值模拟研究,结果表明:随着煤层中地应力增大,煤层基质孔隙率下降、裂隙趋于闭合,致使煤层渗透率降低,减小了气体在孔隙和裂隙中的渗流速率,最终导致瓦斯产出速率和产气量的下降;储层压力与煤层气产出速率呈正相关关系,储层压力越大,瓦斯产出率越高同时累计产气量也越高;随着瓦斯抽采时间增加,煤层渗透率逐渐增大,且储层压力越大煤层渗透率变化越明显。  相似文献   

10.
《煤炭技术》2017,(2):142-144
以沁水盆地南部寺河矿区3#煤层为研究对象,对研究工区内的井间瓦斯含气量差异及影响因素进行了分析。结果表明,造成井间含气量差异的主要因素有构造发育、煤层厚度、埋深及煤岩结构。埋深与煤岩结构是造成单井含气量差异的最直接影响因素,共同决定了煤层的含气性。地层压力越大,煤层密度越低,煤层气含量越高。  相似文献   

11.
深部煤层气勘探开发进展与研究   总被引:9,自引:0,他引:9       下载免费PDF全文
我国煤层气资源主要分布于深部。鄂尔多斯、准噶尔等盆地部分煤层气井勘探成功表明深部煤层气资源在含气量、含气饱和度、储层压力及临界解吸压力等关键参数方面较浅部有利,开展深部煤层气研究及勘探是重要前瞻性课题。鄂尔多斯盆地东南缘延川南煤层气田的勘探,尤其是万宝山构造带延3井组的成功开发是我国深部煤层气开发获得突破的1个典型实例。一般来说,影响深部煤层气开发的因素较复杂,是一个系统工程,通常可以将这些因素划分为资源地质条件和开采技术条件两大类。延川南煤层气田开发的经验表明,影响深部煤层气井产能的主要因素是受地质条件控制的压裂技术与排采技术,提高深部煤层气单井产量的途径是做好富集高渗区选区评价和预测,加强以压裂为核心技术的工程工艺攻关研究及做好排采管理。  相似文献   

12.
临兴深部煤层气含气性及开发地质模式分析   总被引:3,自引:0,他引:3       下载免费PDF全文
鄂尔多斯盆地东缘晋西挠褶带临兴中部地区煤层埋深大于1 000 m,达到了深部煤层气的研究范畴。基于实际生产资料,探讨区内深部煤层含气性,提炼了深煤层开发地质模式。研究认为:以含气量转折为深煤层临界深度的划分依据,则工区内深部煤层的临界深度在2 000 m左右;且深部中煤阶储层的吸附性对温度的敏感性要小于压力,中煤阶煤层的临界深度相对深于高煤阶;深部煤层气仍以吸附气为主,现有的等温吸附测试方法易造成深部煤层气含游离气比例换算较大的误区;深部煤层受温度影响,煤层临储比较高,受应力影响,储层物性较差,气井总体具有"见气快、排水降压难、产气量上升缓慢"的特点;研究区深部煤层气潜力巨大,现有气井经验显示,合理优化开发单元为深煤层单井突破的关键,A型"源-储"相通的富集开发地质模式是深煤层突破重点考虑的开发模式。  相似文献   

13.
淮南潘集外围深部煤层气地球化学特征及成因   总被引:4,自引:0,他引:4       下载免费PDF全文
潘集外围深部煤层气甲烷碳氢同位素分布及其成因对该区煤层气藏的形成和分布规律、煤层气资源评价均具有重要意义。采集了潘集外围深部主要煤层共25件煤样,通过解吸实验获得解吸气样进行了组分、甲烷稳定碳氢同位素测试,分析了深部煤层气组分及稳定同位素分布特征,探讨了煤层气稳定碳氢同位素随埋深的变化特点,结合煤层气形成与演化过程、煤的变质程度分析了煤层气稳定同位素的地质影响,通过Whiticar成因图版揭示了深部煤层气成因,结合相关经验模型估算了煤层气不同成因来源气所占比例。研究结果表明:深部煤样解吸煤层气中CH4含量介于16.2%~96.68%,平均为71.60%,重烃含量介于0.35%~32.13%,平均为9.86%,N2含量介于0.13%~74.72%,平均为21.20%,CO2含量介于1.62%~27.26%,平均为7.30%。自浅部至深部煤层甲烷碳同位素变化于-45.46‰~-31.17‰,平均为-40.92‰,甲烷氢同位素变化于-199.99‰~-133.87‰,平均为-178.04‰,稳定碳氢同位素具有随深度增加偏重的特点。构造热演化史表明研究区煤层气以热成因气为主,兼有生物气可能,研究区煤层Ro,max介于0.702 2%~0.998 3%,主要为气-肥煤,生成的煤层气为湿气,油型气的输入使得δ13C1偏重。Whiticar成因图版分析表明研究区煤层气为以热成因为主,经历了后生改造作用的混合气。估算结果表明13-1煤、11-2煤、8煤、7煤、6煤、5煤、4煤、3煤、1煤生成的煤层气中热成因气比例超过80%,生物气主要由CO2还原作用所形成。  相似文献   

14.
煤层甲烷碳同位素与含气性关系   总被引:1,自引:0,他引:1       下载免费PDF全文
孟召平  张纪星  刘贺  刘珊珊 《煤炭学报》2014,39(8):1683-1690
煤层气甲烷碳同位素值是反映煤层气成因及赋存条件的有效参数。通过对沁水盆地沁南东区块煤层甲烷碳同位素和煤储层含气性测试资料分析,剖析了3号煤层甲烷碳同位素分布特征,建立了煤层甲烷碳同位素与镜质组反射率、煤层埋藏深度和煤储层含气性之间的相关关系和模型,揭示了煤层甲烷碳同位素分布的控制机理。研究结果表明:本区3号煤层自然解吸气甲烷碳同位素为-28.89‰~-53.27‰,平均-36.48‰。与全国其他地区同等演化程度的煤层气相比总体偏重,表现出煤层具有较好的保存条件;3号煤层甲烷碳同位素与镜质组反射率和煤层埋藏深度之间呈对数函数关系,且随着镜质组反射率和煤层埋藏深度增加而变重,与全国煤层甲烷碳同位素统计规律一致,主要受控于煤层气形成的热动力学机制之下的同位素分异效应和煤层气解吸—扩散—运移过程中甲烷碳同位素的分馏效应;煤层甲烷碳同位素与煤储层含气性之间存在相关性,且随着煤层气含量、煤储层压力和含气饱和度增加,3号煤层甲烷碳同位素也相应变重,且呈对数函数关系,反映控制煤储层含气性的因素与控制煤层甲烷碳同位素的因素存在一致性。  相似文献   

15.
为掌握近距离煤层群叠加开采的应力-裂隙-瓦斯渗流规律,构建近距离煤层群煤与瓦斯高效共采技术体系及动态评价模型,以山西吕梁沙曲矿区为研究对象,采用物理相似模拟、超声波试验及SF6示踪气体现场监测相结合的研究方法,分析了沙曲矿区近距离煤层群煤层气资源的赋存特点,探究了沙曲矿区近距离煤层群多次扰动下煤岩损伤变量随应力的变化规律,建立了Boltzmann煤岩损伤方程,得出了沙曲矿区近距离煤层群叠加开采条件下采动应力演化-裂隙发育-瓦斯运移规律。研究结果表明:沙曲矿区煤层的孔裂隙结构特征不利于瓦斯运移,在近距离煤层群叠加开采条件下二次采动对于覆岩应力场和裂隙场的影响并非简单的效果叠加,而是“1+1>2”的影响效果,下伏煤层在叠加开采下产生了贯穿型裂隙,并在其周围衍生了大量的次生裂隙,为煤层瓦斯运移提供了优势通道;根据沙曲矿区煤-气共采不同阶段的时空条件和消突要求,分区分级优选并集成了近距离煤层群煤与瓦斯共采技术体系,即在规划区采用多种地面井规模化多煤层长时间预抽煤层气,在准备区采用多分支水平井井孔定向对接共采和保护层开采+底抽巷定向钻孔群抽采,在生产区采用大采高沿空留巷共采及大直径定向钻孔群共采技术;通过分析煤与瓦斯共采的影响因素,提出了近距离煤层群煤与瓦斯共采动态评价指标体系,建立了贝叶斯煤与瓦斯共采评价模型,实现了对沙曲矿区煤与瓦斯共采效果及矿井部署合理性的评价,得出沙曲一矿煤与瓦斯共采动态合理性概率为0.65、共采合理性等级为“较为合理”;最后阐述了近距离煤层群煤与瓦斯共采技术存在的关键问题,展望了近距离煤层群煤与瓦斯共采技术未来发展方向。  相似文献   

16.
周岩  龙祖根 《煤》2009,18(4)
扩散和渗流是煤层气在煤层中流动的基本形态。在多煤层系统煤层孔隙压力梯度的驱动下,临近层煤层气会越过弱透气夹层向开采煤层的采场、采空区或采气钻孔迁移并涌出,这就形成了多煤层系统的煤层气越流。通过对三者的综合认识,建立了多煤层系统的煤层气整体运移模型,为解决煤矿的实际工程问题提供了更符合实际的理论。  相似文献   

17.
依据韦州矿区煤炭勘探煤层资料、煤层气参数井获取的储层资料,通过对煤层气开发地质信息的有效提取,对韦二煤矿煤储层物性进行深入分析、研究,对煤层气资源量进行了计算,并采用数模方法预测了煤层气抽采率,确定了地面煤层气抽采相对有利区。研究认为:区内煤层含气性整体偏低,煤层甲烷含量在0.20~11.73 m3/t,气含量高值区仅出现在部分煤层、局部区域。多期次构造运动致使裂隙发育复杂化,硬度变小,煤体结构多为碎粒—糜棱结构,渗透率降低。主要可采煤层煤层气资源量为5.55×108 m3,资源丰度为1.51×108 m3/km2,属中等丰度、小型煤层气藏。各煤层煤层气采收率较低,约为15%,可采潜力较差。资源量在煤层分布上相对集中,12、14、15煤层气含量4 m3/t以上重叠区域为煤层气地面抽采相对有利区块。  相似文献   

18.
碎软低渗煤层的煤层气高效抽采一直是制约我国煤层气产业化发展和煤矿瓦斯灾害防治的技术瓶颈。以安徽淮北矿区芦岭煤矿8号碎软低渗煤层为研究对象,通过开展现场调研、分析测试、理论分析、水力压裂物理模拟和数值模拟等工作,提出了碎软低渗煤层的煤层气顶板岩层水平井分段压裂高效抽采模式,揭示了该模式下水力压裂裂缝的扩展延伸规律及控制机理,构建了该模式实施的主要工艺流程。研究结果表明:顶板岩层相对脆性、裂缝扩展压力较高,碎软煤层相对塑性、裂缝扩展压力低。在顶板岩层水平井进行套管射孔和水力压裂,顶板岩层中产生的压裂裂缝,在垂向上向下扩展伸延并穿入碎软煤层;同时在水平方向上也快速扩展延伸,由此产生的牵引作用撕裂下部碎软煤层形成较长的压裂裂缝。数值模拟结果显示,在给定的压裂施工参数条件下,顶板岩层中压裂在碎软煤层中形成的压裂裂缝长度,是直接在碎软煤层中压裂形成的压裂裂缝长度的6.7倍。碎软煤层和顶板岩层中形成的这些压裂裂缝在后续加砂压裂过程中被充填,成为煤层气从下部煤层向顶板岩层水平井运移的导流通道。显然,采用这种抽采模式,碎软低渗煤层可以获得良好的压裂改造效果。研究成果应用于淮北矿区芦岭煤矿煤层气顶板岩层水平井抽采示范工程,取得了很好的产气效果,水平井单井曾连续3,6,12个月平均日产气量分别为10 358,9 039,7 921 m3,截至2017-11-16,已累计产气500万m3,日产气量仍在3 200 m3以上,创造了我国碎软低渗煤层的煤层气水平井气产量的新记录。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号