首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
针对平煤四矿己15-23090运输巷扩帮后锚杆无法重复预紧、锚固体强度减弱等问题,提出了新型张拉预紧式锚杆配套设备,研究预紧力对锚杆锚固性能的影响。通过数值模拟、单轴压缩试验,分析不同预紧力下,岩体强度及内部裂隙发育特征得出:(1)张拉高预紧式锚固体可有效提高岩体的峰值强度和残余强度,增强其极限承载能力;(2)高预紧力能约束内部张拉和剪切裂隙的发育,提高了岩体的整体性。巷道试验后,张拉锁具使锚杆预紧力普遍达到60kN以上,使用锁具紧固锚杆后,巷道帮部位移量比原支护方式减少了44.3%,解决了扩帮后锚杆因尾部螺纹长度不足而无法重复预紧的问题,降低了施工强度及支护成本。  相似文献   

2.
2308运输巷围岩变形量大,补打锚杆效果不佳。矿井提出采用张拉预紧式锚杆对原锚杆重复预紧,通过3DEC7.0数值模拟可知,安装锚杆后巷道围岩变形量及裂隙发育数量显著减小,并与预紧力大小成正相关。通过监测两帮变形量可知,采用张拉预紧式锚杆支护效果优于补打传统转矩式锚杆,不仅提高了围岩稳定性,还减少了作业强度和支护成本。  相似文献   

3.
《煤炭技术》2022,(1):8-12
针对深部受采动影响巷道围岩松散破碎难以支护的工程问题,考虑巷道围岩裂隙的存在,采用3DEC中DFN技术预制初始损伤围岩模型进行模拟拉拔试验,研究结果得出:破碎岩体中,端锚锚杆最易发生脱黏失效,且无法通过黏锚力控制浅部围岩,易出现片帮。锚固长度为700 mm时,拉拔载荷为130 kN即发生锚固失效;当锚固长度增加到1 400 mm时,锚固性能显著增强,且锚杆抗拔力提高了20.7%。当增加锚杆预紧力时,对巷道周边破碎围岩的控制效果显著增强。基于上述研究,提出深部破碎围岩锚杆高预紧力加长锚固支护技术,经工业性试验,高预紧力加长锚固技术使巷道变形得到有效控制,锚杆预紧力可达到60 kN以上,回采期间巷道帮部相对移近量减小了44.7%,显著减小了超前支护难度,提高了施工效率。  相似文献   

4.
采用理论分析、数值计算研究得到锚杆支护高预紧力的作用机理:减小围岩早期变形,提高围岩的承载能力;提供较大的初始支护阻力,实现锚固围岩高阻让压;使顶板处于预应力梁状态,有效减小顶板拉破坏和早期离层。总结了增大锚杆预紧力的各种方法,并将高预紧力锚杆支护技术应用于三河口矿2421工作面轨道巷,结果表明,增大锚杆预紧力可减小围岩的变形、保证围岩稳定。  相似文献   

5.
预应力锚杆是提高围岩强度和保证巷道稳定的有效支护手段。基于单根全长锚固预应力锚杆在围岩中的作用机理,推导了预紧力作用下全长锚固预应力锚杆形成的锚固区内的应力分布规律。根据锚杆锚固区的两种破坏形式,提出锚杆最小和最大预紧力并推导了其计算公式。该公式在工程中的应用结果表明,在最小与最大预紧力之间,合理增大锚杆预紧力能够有效提高支护强度,对控制巷道围岩变形效果显著。  相似文献   

6.
在分析软岩巷道围岩变形与破坏特征的基础上,采用有限差分数值计算软件FLAC3D模拟分析了北京木城涧煤矿穿越软岩地层斜井巷道在高预应力强力锚杆端部锚固与全长锚固支护下预应力在巷道围岩中的分布特征.结果表明:不同类型岩层对巷道围岩受力与变形影响明显;相对于端部锚固,全长锚固能使锚杆的锥形压应力区相互叠加,锚杆预紧力扩散到大部分锚固区域,更能充分发挥锚杆整体支护的效果.现场试验表明,高预应力锚杆全长锚固支护方式能够有效控制软岩巷道顶部和两帮煤岩体的大变形.  相似文献   

7.
 通过对常用的测力锚杆改进,开发出了能够监测高预紧力全长锚固锚杆受力状况的CM-200Ⅰ型测力锚杆,并进行了实验室标定。同时开发出适用于测力锚杆施加扭矩的扭矩套筒,更好的实现了对高预应力全长锚固锚杆的实际工况监测。将改进后测力锚杆应用于井下,通过监测结果知高预紧力全长锚固锚杆的载荷在施加预紧力后沿杆体均匀分布,围岩变形后,在距锚杆尾部500mm处出现中性点,此处轴力最大,剪应力为零。并且根据巷道表面位移监测结果知高预紧力全长锚固锚杆有效的控制了顶板的变形,充分发挥了锚杆的支护性能  相似文献   

8.
锚杆预紧力对锚固体强度强化的模拟实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
韦四江  勾攀峰 《煤炭学报》2012,37(12):1987-1993
锚杆预紧力在巷道支护中发挥着重要作用,但其对锚固体强度强化特征的研究仍存在不少问题;以砂蜡材料、预紧力锚杆和平面应变约束装置制作锚固分离体,在RMT-150C实验机上对其力学特性进行了研究。实验结果表明:锚固体的峰值强度、残余强度的强化系数和岩体强度、锚杆预紧力呈正相关,岩体强度一定时,随着锚杆预紧力的增大,强化系数逐渐增加,锚杆预紧力对锚固体峰后残余强度的强化大于对锚固体峰值强度的强化。锚固体的应变-应力全程曲线与锚杆受力存在着对应关系,锚固体屈服之前,锚杆受力增加缓慢;屈服点之后,受力急剧增加;峰后软化阶段锚杆受力逐渐增加,摩擦阶段锚杆受力处在不断的调整下降中。预紧力一定时,岩体强度越高,锚杆受力增加幅度越小;岩体强度一定时,高预紧力锚杆受力增幅较小;软弱岩层破坏后,锚杆载荷的损失比坚硬岩层大,预紧力锚杆对软弱岩层的作用比坚硬岩层明显。现场实践表明,提高锚杆预紧力能够有效控制围岩的变形。  相似文献   

9.
通过分析工作面回采巷道在断层构造应力作用下围岩破坏变形机理,提出了"高强高预紧力锚杆支护及顶板斜拉锚索梁"主动支护技术,增强厚顶煤锚固体的抗剪能力、提高两帮的承载能力,保证巷道围岩的稳定性。  相似文献   

10.
为研究锚杆对深部巷道围岩的控制作用,通过制作三轴加载物理相似模拟试验系统,分析了锚杆支护强度、锚杆预紧力对预裂试件的锚固效果并构建了劈裂板梁结构模型。试验结果发现:无锚杆支护时,试件表现出脆性破坏;随锚杆支护强度及预紧力增大,试件承载能力得到提高且其应力应变曲线具有较好的屈服平台,表现出明显的延性特征;试件垂向位移量相近时,随锚杆支护强度及预紧力增大,试件体应变变小;试件主要沿最大主应力方向(垂直方向)发生劈裂破坏,拉伸裂纹集中在临空面附近,剪切裂纹则分布在远离临空面的区域,在锚杆的作用下形成类似板梁结构,板梁挠度不仅与试件自身力学性能、外载荷有关,还与板梁长度、板梁结构形式有关。锚杆支护密度的增大改变了板梁结构形式,减小了板梁挠度,而较大预紧力能够降低板梁之间的离层量,相应的试件非连续变形得到控制。由此可知,锚杆支护不仅可提高破裂围岩的承载能力,而且可有效控制破裂围岩的非连续变形,从而提高深部巷道围岩的连续性和整体稳定性。  相似文献   

11.
预应力锚杆(索)群连锁锚固技术的试验研究   总被引:1,自引:0,他引:1  
为了提高巷道围岩锚固体的强度、刚度和抗变形能力,基于锚杆(索)锚固作用机理,提出了"高预紧力、高强度、高刚度、高锚固力和低密度"的设计理念。采用高强锚杆(索)及组合构件作为锚固材料,利用连锁构件将锚杆(索)群进行横向与纵向的连锁,通过给锚杆(索)提供高锚固力和高预应力,从本质上调动锚杆(索)群的主动锚固作用,使其与锚固岩体共同形成有机的承载结构,有效减小巷道围岩变形与破坏,改善巷道安全状况。现场试验表明,这样的设计理念和技术应用,能够较好地解决巷道围岩顶板断裂节理发育、变形不均匀和掘进速度慢等问题,具有合理性与适用性,同时可产生良好的经济效益,值得应用和推广。  相似文献   

12.
煤巷锚杆-锚索支护的预应力协调作用分析   总被引:6,自引:1,他引:5       下载免费PDF全文
张镇  康红普  王金华 《煤炭学报》2010,35(6):881-886
在分析目前锚杆、锚索联合支护条件下施加预紧力时存在问题的基础上,提出了锚杆、锚索联合支护的预应力协调问题,并采用有限差分数值计算软件FLAC3D对锚杆(索)施加不同组合预紧力时围岩产生的应力场分布特征与规律进行了模拟分析。结果表明:预应力锚杆、锚索联合支护可以在巷道围岩锚固结构中形成相互连接、相互叠加的有效压应力区,随着锚杆(索)预应力的增加,压应力区的值和范围也相应地增加;锚杆端部的拉应力值和范围随锚杆预紧力矩的增加而增大,这种情况可以通过施加锚索预紧力进行平衡,锚杆预紧力矩越大,平衡其端部拉应力区所需的锚索预紧力越大;结合工程施工现状,合理的锚杆预紧力矩选择在300~400N.m,锚索预紧力为200~300kN比较合理。井下试验表明,合理预应力组合的锚杆锚索联合支护系统可以有效控制围岩变形。  相似文献   

13.
郝登云 《煤炭工程》2020,52(8):112-117
针对回采巷道锚固体内出现的离层现象,基于荷载传递规律、界面剪切滑移模型和锚固体离层面两侧轴力及剪应力布等研究成果,研究了锚固体上任意处发生离层前后不同锚固方式树脂锚杆的承载特性。结果表明:受锚固方式、锚杆预紧力和锚固体离层的影响,锚杆承载特性呈明显的不均匀分布特征。离层发生前,尽管端头锚固、加长锚固和全长锚固锚杆的界面剪应力和锚杆极限承载力峰值相同,但其界面剪应力和锚杆极限承载力分布形态各异。离层发生时,三种锚固方式锚杆不仅界面剪应力和锚杆极限承载力分布形态都发生了明显变化,而且其界面剪应力和锚杆极限承载力峰值也各不相同。全长预应力锚固锚杆承载特性要优于端头、加长锚固和全长锚固锚杆,对围岩变形和离层有更好的约束和抑制作用,在容易发生围岩离层的回采巷道应优先采用全长预应力锚固锚杆。  相似文献   

14.
为了解决高膨胀松软围岩巷道顶板变形量大、锚杆脱落失效等问题,利用工程类比分析、数值模拟等方法对高膨胀软岩巷道稳定性影响因素及锚杆支护技术进行了研究。研究结果表明:高膨胀松软岩层强度低,遇水易膨胀软化,是顶板破坏失稳的内因,围岩高集中应力及支护强度不足是外因,可通过优化巷道布置方式、加强支护提高巷道稳定性。研究确定了高膨胀软岩巷道树脂加长锚固锚杆锚索组合支护方案,主要参数为:锚杆间排距800 mm×900 mm,锚杆预紧扭矩不小于400 N·m;锚索间排距1 600 mm×1 800 mm,每排2根,锚索预紧力为200~250kN,并将设计支护方案进行了现场试验,取得了良好的支护效果。  相似文献   

15.
以深部直墙半圆拱巷道为例,基于非线性Hoek-Brown强度准则,考虑顶板围岩应力与锚杆支护作用,构造出顶板围岩破裂机制,利用极限分析上限法,提出了巷道开挖初期顶板锚杆预紧力的简化设计方法,给出了相应工程建议措施,并通过现场应用实例验证了高强预紧力支护对顶板围岩的控制效果。研究结果表明:巷道开挖初期,锚杆支护构件只有施加足够预紧力,才可有效限制顶板围岩下沉破坏;随岩体强度参数增大,锚杆所需预紧力不断减小,而随锚杆布设间距与围岩应力增大,锚杆所需预紧力不断增加;在软弱或松散破碎围岩中,可通过采用高强、高韧性锚固支护构件并施加高预紧力或注浆加固等方式来获得较理想围岩控制效果。  相似文献   

16.
巷帮锚杆锚索预紧力不匹配是造成高煤帮巷道支护失效的重要原因之一。文章分析了某矿30211综采工作面回风巷帮锚索崩断射人事故原因,采用FLAC3D软件模拟了巷道采用锚杆、锚索联合支护时二者的匹配关系。结果表明:锚杆、锚索两种延伸率差别很大的材料用在同一条巷道的同一侧帮时,延伸率小的锚索承担的载荷较大,先破断; 锚杆、锚索预紧力联合作用在巷道帮部围岩表面及内部附近形成了大小不等的压应力区,随着预紧力的增加,压应力值和范围也在不断扩大; 锚杆的预紧力矩设定在200~300N?m之间,且锚索的预紧力设定在200~250kN之间,是比较合理的匹配方案。研究结果对高煤帮巷道支护设计和施工具有一定的指导意义。  相似文献   

17.
针对深井软岩巷道高地温高地压锚固支护失锚率增大的问题,以淮南矿区深井软岩巷道为例,采用室内相似模拟试验方法,进行温压耦合作用下锚固体变形破坏特性和锚杆受力特征试验研究。结果表明:随着温度升高和侧压系数的增大,锚固体的破裂深度增大,而侧压系数增大则锚固体的破裂倾角减小。当λ=1.2、1.5和1.8时锚固体的破裂深度分别为托盘直径的1.02~1.2倍、1.13~2.2倍和1.15~2.4倍,锚固体破裂倾角分别为45°~60°、40°~45°和30°~35°|温度升高和侧压系数增大,锚固体压密阶段水平变形量增大,随着侧压系数的增大,温度对锚固体变形破坏规律影响减弱|锚杆在破碎块体作用下处在压、张、剪的复杂应力状态,锚杆以受张拉应力为主,弯曲位置受压、剪应力作用,随着温度和侧压系数的增大,锚杆弯曲位置受压、剪应力增大,锚杆发生明显弯曲变形,锚杆锚固体呈渐进式破坏。将全长锚固支护工艺应用于丁集矿西三轨道大巷围岩支护参数优化设计,并进行现场监测,反馈表明巷道围岩支护效果较好。  相似文献   

18.
针对各种高应力巷道锚杆破断导致的支护失效难题,采用理论分析、数值计算、现场试验等手段,分析了巷道围岩变形的组成与锚杆破断形态,研究了不连续变形的垫衬效应及其与锚杆脆塑性破断过程的内在联系。认为垫衬效应是导致锚杆脆性断裂的根本原因,提高锚杆预紧力是消减垫衬效应的有效手段,普通锚杆强度、延伸率与连续变形的不协调性是锚杆塑性破断的根本原因,提高锚杆强度与伸缩率是强力协调围岩变形稳定的有效途径。  相似文献   

19.
锚固力与预紧力是实现煤矿井下锚杆索高预应力强力支护的前提,是影响其支护效果的关键因素。为最大限度地发挥锚杆索主动支护性能,以柴家沟煤矿为试验地点,进行锚杆索可锚性试验,锚杆预紧力矩转化效率试验和锚索张拉预紧力损失试验。试验结果表明:柴家沟煤矿巷道已安装锚杆索,在进行拉拔试验时,均能达到足够高的锚固力,锚杆拉拔力为150 k N,锚索拉拔力为200 k N时,锚杆索均未发生失效现象,锚固效果良好;当扭矩为400 N·m时,锚杆预紧力约为43~83 k N,围岩较硬时锚杆预紧力较高,围岩表面松软不完整时,锚杆预紧力偏低;泵压-拉力转化系数较低,锚索张拉时,为保证足够的预紧力,应采取超张拉措施。  相似文献   

20.
我国煤矿锚杆强度偏低,对冲击吸收功没有指标要求。通过对煤矿井下锚杆破断情况调查及分析,发现锚杆破断强度低、夹杂物含量高、冲击韧性不足、抗冲击能力不够是造成杆体脆断的重要原因,冲击韧性值低是发生脆断的材质内在因素。介绍了超高强热处理锚杆的主要工艺,对超高强热处理锚杆材料进行了拉伸、拉扭弯及力学性能实验室试验,数据显示这种材料在受拉、扭、弯的情况下可以承受较高的载荷,特别是冲击吸收功指标,是热轧强力锚杆的数倍。在潞安集团漳村煤矿动压巷道进行了井下现场试验,对超高强热处理锚杆受力情况进行了监测,锚杆施加预紧扭矩后初始预紧力为52~98 kN,受力稳定后最大受力为223 kN,小于其破断极限,矿压监测数据表明,支护系统有效地控制了围岩的变形,支护效果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号