首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
为研究攀枝花铁矿开采境界内铁矿石的动力学性能,利用动静组合分离式霍普金森杆实验系统,开展 4 种典型铁矿石的动态单轴压缩试验。 以动态强度、能量耗散、碎屑分布为切入点,分析 4 种矿石的动力学响应特征。 试验结果表明:4 种铁矿石的动态强度均具有明显的率效应,随冲击速率的增加而增大;所研究冲击速率范围内,中低 品位铁矿石的动态强度显著大于高品位铁矿石和表外矿的强度;随着冲击速率的增加,单位体积耗散能随之增大,且 单位体积耗散能的增加幅度与铁矿石的品位相关;基于分形理论分析 4 种铁矿石破坏后碎屑块度的分形维数,发现碎 屑块度的分形维数随冲击速率增大而增加;最后,分析了单位体积耗散能与分形维数的关系,发现二者呈现非线性正 相关关系。  相似文献   

2.
赵毅鑫  龚爽  黄亚琼 《煤炭学报》2015,40(10):2320-2326
为研究煤样动态拉伸变形破坏过程中的能量耗散规律,利用分离式霍普金森杆冲击加载系统,对煤样进行冲击条件下巴西圆盘劈裂试验,探讨了冲击速度、层理倾角及饱和含水对煤样总吸收能密度、总耗散能密度和损伤变量的影响;同时将煤样破碎后产生粒径为0~0.2 mm和0.2~5 mm的碎屑进行收集,并对不同尺寸碎屑的分布特征进行了对比分析。研究表明:同一层理倾角的自然煤样损伤变量随着冲击速度的增加呈近似线性增加,饱水煤样损伤变量整体随冲击速度增大呈指数函数增加;相比于自然煤样,饱水煤样粒径为0~0.2 mm的碎屑量减少了14.1%~31.3%,粒径为0.2~5 mm的碎屑量减少了33.7%~53.0%;但当层理倾角为45°时,饱水煤样碎屑量质量百分比反而比自然煤样要大。  相似文献   

3.
为研究冲击载荷下预制孔洞煤样力学特性及能量耗散规律,制备含轴向孔洞的直径50 mm,高50 mm圆柱体煤样,利用分离式霍普金森压杆(SHPB)装置,开展8个孔洞尺寸和3个冲击气压水平的加载试验研究,借助平面场应变测量技术(VIC–2D)和高速摄像机,分析了冲击加载过程中试件动态应力、动态应变、裂纹演化、破坏失效及能量耗散特性。结果表明:(1)在试验涉及的孔洞直径范围内,冲击载荷下完整与孔洞煤样动态应力–应变过程均呈现微裂隙压密阶段、弹性阶段、塑性阶段和破坏阶段。同一冲击气压下,随孔径增大,煤样动态抗压强度、动态峰值应变均降低;孔径由0增大至8 mm时,煤样动态抗压强度和峰值应变下降出现快–慢分区特征。与完整煤样以拉伸裂纹破坏为主不同,孔洞煤样主要以拉伸裂纹–剪切裂纹复合破坏为主,且随着孔径增加,试件内部裂纹扩展能力变弱。(2)揭示了冲击载荷下孔洞煤样的能量耗散规律:孔洞煤样透射能、吸收能与孔径呈负相关,反射能与孔径呈正相关,这主要由孔洞改变试件过波面积造成。随孔径增大,煤样过波面积降低,其吸收能和透射能随之降低,与冲击载荷下孔洞煤样破碎度与孔径负相关结论相一致。研究成果有利于明晰冲击地...  相似文献   

4.
在不同的冲击荷载下,岩石会破碎成不同尺寸的块体或颗粒。为了对动态荷载下岩石的吸能特性和动态破碎块体的尺度特征进行定量研究,采用分离式霍普金森压杆系统(SHPB)对煤矿深部砂岩进行了动态压缩试验。得到了不同冲击荷载下岩石试件的动态压缩强度规律,分析了入射能对试件吸收能的影响和应变率效应。在此基础上,利用3D扫描技术、数字图像处理技术得到破碎块体的三维扫描模型,探讨了砂岩试件破碎块体尺度特征与吸收能量的关系。研究表明:砂岩试件的动态抗压强度和吸收能都具有明显的应变率效应,动态抗压强度和动态应变率近似呈线性关系,而吸收能则呈指数型关系;在不同的入射能量下,试件吸收的能量有所不同,吸收能随入射能呈线性增长;在应变率为54~221.9s-1范围内,3D扫描技术能对砂岩破裂块体进行高精度数字重构;随着冲击荷载和输入能量的增大,试件破碎块体的形状逐渐丰富,破碎块体的粒径逐渐减小,比表面积逐渐增大,试件的破碎形态由大块体破断向小块体破碎转变。砂岩材料的破碎成形和能量耗散是材料的率效应机制。  相似文献   

5.
岩石试件SHPB劈裂拉伸试验中能量耗散分析   总被引:5,自引:0,他引:5  
利用直径50 mm变截面分离式Hopkinson压杆(SHPB)试验装置,对厚径比0.5的煤矿砂岩巴西圆盘试件进行对径加载,采取改变驱动气压的方法实施不同加载速率的动态劈裂拉伸试验。研究了砂岩试件动态劈裂拉伸破坏过程中的能量构成和耗散特征;尝试从能量角度出发,对砂岩试件动态劈裂拉伸破坏形态、平均应变率效应和动态拉伸应力强度进行能耗分析;发现试件吸收能量绝大部分耗散于岩石的损伤演化和变形破坏,可以较好地反映砂岩试件在冲击载荷作用下的抗拉性能变化。结果表明:砂岩试件拉伸应力强度与吸收能量随平均应变率增加近似对数关系增加,表现出显著的应变率相关性。研究成果可为岩石类脆性材料动态拉伸力学性能研究提供参考。  相似文献   

6.
从细观角度深入探讨岩石动态力学特性,是理解岩石爆破破碎机理的方式之一。采用分离式霍普金森压杆对围压作用下的红砂岩试件进行动态加载,以孔隙率变化表征细观特征,基于能量耗散指标研究了红砂岩动态损伤与破碎的能量耗散。结果表明:冲击次数总体趋势是随着气压的增加逐渐减少,试件破碎前能量耗散增加,并没有明显的回弹;在第3次冲击或第4次冲击时,动态特性存在差异;在初始冲击中,孔隙度由中孔、大孔闭合到微孔,随着冲击载荷的增加,微孔孔隙度差值的峰值向后移动。  相似文献   

7.
为研究热处理后花岗岩动态拉伸特性及能量耗散规律,利用分离式霍普金森压杆(SHPB)装置,分别对常温(25℃)和经历200~800℃热处理后的花岗岩试样进行3组冲击速度下的动态劈裂拉伸试验,探讨温度、冲击速度与花岗岩动态拉伸强度及能量之间的关系。结果表明:在冲击速度一定时,随着温度的增加,试样拉伸强度整体呈下降趋势;在温度一定时,试样的动态拉伸强度随着应变率的增加逐渐增大;试样的耗散能在劈裂荷载作用下经历4个阶段:压密阶段、弹性阶段、屈服损伤阶段、完全破坏阶段,且温度越高,用于试样破坏的能量越少,耗散能、能耗密度下降幅度越大;试样的破坏形态对温度的敏感程度高,即随着温度的升高,试样破碎程度加剧,碎块对称性消失,楔体效应更明显,塑性增强。  相似文献   

8.
煤系砂岩动态拉伸破坏及能量耗散特征的试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
我国深部开采过程中,围岩处于显著的高应力扰动环境。动载作用下岩石拉伸力学特性的研究,是实现矿井围岩稳定性有效控制及安全生产的重要基础。利用分离式霍普金森压杆(SHPB)试验系统,对煤层顶板砂岩进行动态巴西圆盘试验。研究结果表明:砂岩动态拉伸强度随加载速率的升高逐渐增强,这种依赖性在较高加载速率时更加显著;砂岩动态拉伸破坏经历主裂纹产生、微裂纹发育及裂纹相互贯穿3个阶段;随着加载速率的升高,试样破坏方式逐渐从单一张拉破坏逐渐发展为张拉破坏与局部剪切破坏共存,碎块平均体积逐渐减小,破坏程度逐渐提高;试验过程中,试样破坏所需的耗散能量随加载速率的升高逐渐增加,并且其占输入能量的比例逐渐提高,即砂岩破坏过程中能量利用率逐渐提高。  相似文献   

9.
为研究玄武岩在循环冲击作用下的能耗特征及损伤,采用带围压装置的霍普金森压杆(SHPB)系统设置5种冲击气压梯度对玄武岩试样开展单轴冲击试验和两种围压状态下的循环冲击试验。研究发现,随着循环次数增加,试样单位体积吸收能呈现前期匀速缓慢增长,临近破碎时增长速率急剧攀升的趋势,玄武岩试样单位体积吸收能与冲击气压值呈正相关;施加围压可大大增加玄武岩抵抗外部冲击的能力,破碎时累计比能量吸收值比无围压状态提升10倍以上;随着循环冲击次数的增加,损伤因子D先匀速上升,而后上升速率加大,临近破碎时,岩石吸能效率下降,损伤因子又趋于平稳;损伤因子D达到0.4左右时,玄武岩试样出现较为明显的剪切裂纹。  相似文献   

10.
为研究冲击荷载作用下岩石能量吸收与破碎分形特征,应用霍普金森试验系统对0.6、0.8、1.0、1.2、1.4长径比花岗岩进行动态冲击试验,分析了应变率效应和尺寸效应对花岗岩试件的破碎能耗和破坏形态的影响;在考虑时间因素的基础上,提出一种新的能时密度指标来评价能量耗散,结合分形维数计算与能时密度分析,研究岩石在冲击过程中的能时密度与分形特征。结果表明:0.6 ~ 1.4长径比花岗岩试件的应变率和能时密度均符合乘幂关系,同种长径比试件的能时密度随应变率增大呈递增趋势;在48.8 ~124.2 s-1应变率区间内,分形维数随应变率增加显著增大;花岗岩试件在动荷载下的能时密度和分形维数符合乘幂关系,单位时间内岩石吸收能量越多,分形特征就越明显;引用能时密度结合岩石破碎块度的分形维数计算,能够定量研究岩石单位时间内的能量吸收规律。  相似文献   

11.
采用霍普金森压杆(SHPB)实验装置对经静态压缩制备的峰后破裂砂岩进行单轴冲击试验。基于SHPB试验能量理论,研究峰后破裂砂岩在动态破坏过程中的能量耗散特征,并与完整砂岩进行对比分析。研究结果表明:动荷载作用下峰后破裂砂岩单位体积吸收能与入射能呈线性关系,且峰后破裂砂岩单位体积吸收能对入射能的敏感性低于完整砂岩;峰后破裂砂岩的破坏形态与试样吸收能量的大小相关,且存在一个吸收能量值使得峰后破裂砂岩和完整砂岩破坏程度的相对性发生改变。  相似文献   

12.
冲击载荷作用下煤岩破碎与耗能规律实验研究   总被引:2,自引:0,他引:2  
为了探索煤岩在冲击过程中的破坏特征和能量耗散规律,利用Φ75 mm霍普金森压杆(SHPB)实验装置,对煤岩试件进行不同应变率条件下的冲击压缩实验,分析了冲击加载速率对煤岩破碎耗能和块度分布的影响。实验结果表明:在实验应变率范围内,随着子弹速度的提高,应变率和应力波携带的能量均呈线性增长,而煤岩破碎耗散能则呈指数上升。通过对实验碎块进行块度分维,发现随着应变率的提高,试件的耗散能密度快速增大,煤岩碎块的分形维数就越大,块度越细,破坏的程度越剧烈。分形维数与应变率及耗散能密度之间呈对数增长的关系,即分形维数增大的趋势变缓。  相似文献   

13.
霍普金森杆冲击加载煤样巴西圆盘劈裂试验研究   总被引:7,自引:0,他引:7       下载免费PDF全文
赵毅鑫  肖汉  黄亚琼 《煤炭学报》2014,39(2):286-291
为研究煤样动态拉伸变形破坏特征,利用分离式霍普金森杆冲击加载系统,对煤样进行冲击条件下巴西圆盘劈裂试验,探讨了冲击速度和煤样中层理倾角对煤样动态抗拉强度、破坏应变及应变率的影响;并通过高速相机和数字散斑图像分析方法,对样品的动态劈裂及表面应变场变化过程进行了初步分析。研究表明:冲击速度和层理倾角对煤样动态拉伸破坏特征有明显影响。冲击速度越大,煤样动态抗拉强度则越大,但其随冲击速度增加的幅度逐渐减小;样品破坏应变在冲击速度为3.5 m/s时出现最大值。在冲击速度相近的情况下,层理与加载方向夹角相垂直时,样品的破坏应变相对较大,而应变率则最小。抗拉强度随层理倾角波动变化。在层理倾角与加载方向平行或非垂直时,煤样主要表现为拉伸破坏;在层理与加载方向非平行或非垂直时,样品表现出基质的拉伸和层理的剪切破坏相伴生。  相似文献   

14.
基于煤的冲击倾向性测定方法进行预制钻孔煤样单轴加载试验,研究钻孔煤样的冲击倾向性变化规律,引入破碎颗粒分形维数与新增表面积,分析钻孔煤样破碎过程中的能量耗散规律。结果表明:(1)钻孔使试样以剪切劈裂破坏形式转变为在孔洞两侧孕育、融合裂隙并在岩桥之间产生贯穿裂纹的破坏形式,同时伴随塌孔现象。随钻孔排数增多,钻孔试样呈现出应力峰前塑性损伤逐渐增大,峰值强度降低、积聚弹性能减少,峰后破坏耗时延长、耗能提升的趋势,且单轴抗压强度、冲击能量指数、弹性能量指数均逐渐降低,动态破坏时间显著升高,冲击倾向性逐渐减弱。(2)试样破碎颗粒分形维数与新增表面积具有良好的负相关性:试样破碎程度越低,分形维数越高,新增表面积越小。(3)试样应力峰前能量的输入、耗散与新增表面积无明显关系。峰后能量释放及耗散规律与破碎颗粒新增表面积变化规律一致,新增表面积越大则峰后耗能越多。受加载速率及钻孔布置影响峰后能量差值与新增表面积变化呈"U"形变化趋势。钻孔减缓了试样峰后能量释放与能量耗散速率,且二者降低幅值较为相近,单孔试样降低约17.0%,双孔试样降低约68.3%,三孔试样降低约70.8%。钻孔卸压可以降低峰前积聚的应...  相似文献   

15.
韩秀会  李成武  邢同振  高平波 《煤炭学报》2016,41(11):2743-2748
采用霍普金森杆冲击加载装置,通过高速摄影机搭建实验的数据采集系统,以数字散斑相关方法作为实验的观测手段,对巴西圆盘煤试件在冲击载荷作用下的冲击劈裂变形场演化规律及裂隙扩展特征进行实验研究。试验结果表明:1从变形场演化特征分析,加载初期变形场相对均匀,随荷载增加变形局部化特征明显。变形场时空演化总体表现为两个阶段特征:峰前水平方向变形量值变化较快,垂直方向变形量值变化较慢;峰后由于裂隙演化,水平方向变形量值变化缓慢,垂直方向变形量值变化较快;2霍普金森杆加载过程中,在试件两端加载处出现了局部压碎区,加载过程中主裂纹从压碎区域萌生并沿径向加载方向扩展至另一端贯通破坏;3实验测得煤样在冲击载荷作用下峰前应力随应变呈线性增长,弹性模量与静荷载相比有较大提高,由于压碎区域存在,冲击加载实验得到的煤试件拉伸强度与实际相比偏小。  相似文献   

16.
不同应变率下煤岩冲击动力试验研究   总被引:15,自引:0,他引:15       下载免费PDF全文
刘晓辉  张茹  刘建锋 《煤炭学报》2012,37(9):1528-1534
利用75 mm的分离式霍普金森压杆(SHPB)实验系统,对煤岩进行不同应变率下冲击压缩试验。实验结果表明:煤岩微细观特征复杂,离散性强;煤岩在低应变率下多呈轴向劈裂破坏,高应变率下呈现出压碎破坏;冲击过程中能量随着应变率的增大而增大,耗散能与应变率基本呈弱幂函数关系或线性分布关系;煤岩破碎块度分维与应变率呈线性相关,分形维数在1.7~2.2范围内,应变率越大,块度越小,分形维数越大,煤岩耗散能量越大。  相似文献   

17.
冲击荷载下轴压对峰后破裂砂岩力学特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
刘洋  刘长武 《煤炭学报》2018,43(5):1281-1288
针对深部工程围岩常处于峰后破裂状态且遭受动力扰动影响的特点,利用动静组合加载SHPB实验装置对经静态压缩制备的峰后破裂砂岩进行冲击压缩试验,开展一维动静组合加载下破裂岩石的力学特性研究。试验中预先设置轴向静载为8,24和48 MPa三个系列,然后进行不同应变率下冲击加载,研究轴向静载对峰后破裂砂岩动力学特性的影响。对比完整砂岩试验结果表明:轴向静载8 MPa和相近应变率条件下,峰后破裂砂岩组合强度与冲击强度均低于完整砂岩组合强度与冲击强度,两者变形模量相差不大,但峰后破裂砂岩单位体积吸收能大于完整砂岩单位体积吸收能。轴向静载相同时,峰后破裂砂岩组合强度与冲击强度均随着应变率的增大而增大;轴向静载不同时,峰后破裂砂岩组合强度随着轴向荷载的增大而增大,而冲击强度随着轴向静载的增大先增大后减小。随着轴向静载的增大,峰后破裂砂岩单位体积吸收能也随之增大。动静组合加载下峰后破裂砂岩呈剪切破坏模式,且原始裂纹影响破裂面的扩展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号