首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
作为具有优异性能的碳材料,石墨烯应用前景广阔。我国煤炭资源储量丰富,以煤为原料,探讨制备石墨烯的研究需不断深化。受岩浆影响的热接触变质煤具有高碳含量、高芳香度等特点,但其制备石墨烯的可行性值得研究。以淮北煤田朔里煤矿5号煤层为研究对象,采集3个靠近岩浆侵入体的热接触变质煤为原料。煤基石墨烯的制备采用改进Hummers法,原煤经石墨化后,通过氧化、超声剥离、还原成石墨烯。采用傅里叶变换红外光谱(FTIR)、拉曼光谱和X射线衍射对煤基石墨、氧化石墨烯和还原氧化石墨烯逐一进行分析。结果表明:3个样品制得的煤基石墨的(002)晶面间距均为0.3381 nm。氧化石墨烯的分子结构中含有羧基、羟基和环氧基,在还原后这些官能团脱落并形成了还原氧化石墨烯结构中的缺陷。煤基石墨和还原氧化石墨烯的红外光谱都出现了羟基的特征吸收峰,区别在于煤基石墨中的羟基为石墨化过程中所残留的,而还原氧化石墨烯中的羟基则是氧化石墨烯未彻底还原所残留的。拉曼光谱分析的结果表明氧化石墨烯在还原后ID/IG(D峰与G峰强度比)>1,为还原过程中石墨烯片层表面的环氧基脱落形成的面缺陷所导致。由朔里热接触变质煤所制备出的还原氧化石墨烯的平均层数分别为4.29、3.97和4.31,均属少层石墨烯,热接触变质煤可作为制备石墨烯的原料。  相似文献   

2.
石墨烯作为21世纪的战略性新兴材料,因其优异的性能受到广泛关注。研究表明煤可作为石墨烯碳源,并且煤的属性也影响石墨烯的结构特征,结合我国煤变质成因复杂、煤变质作用类型多样的特点,旨在研究不同变质作用背景对石墨烯结构的影响特征。采集黔西地区深成叠加热液变质作用6个煤样及寒婆坳地区岩浆热变质作用4个煤样,全部利用HCl-HF-HNO3酸洗方法进行处理后得到脱矿煤样,以排除矿物的影响;后使用中频感应石墨化炉对脱矿煤样进行2 800℃高温处理后得到煤基石墨样品;最后利用改进的Hummers氧化还原法对煤基石墨进行氧化、超声剥离、还原处理,得到石墨烯样品;用于测试样品微晶尺寸、空间形态等信息的X射线衍射(XRD)对脱矿样、煤基石墨、石墨烯进行表征并得到相关结构参数,用于测试样品缺陷、完整性的拉曼光谱(Raman)对脱矿样、煤基石墨、石墨烯样品进行表征并得到相关参数,用于观察样品微观表面形貌的透射电镜(TEM)对石墨烯样品进行表征并得到图像。实验及表征结果:透射电镜(TEM)得到的图像表明2种变质类型的煤均可制备出3~5层的石墨烯层片。X射线衍射(XRD)和拉曼光谱(Rama...  相似文献   

3.
为研究云南小发路无烟煤制备煤基石墨烯及其谱学特征,采用改良的Hummers氧化还原法制备煤基石墨烯,并综合利用透射电镜(TEM),X射线衍射(XRD)、拉曼光谱(Raman)和傅里叶变换红外光谱(FT-IR)等表征手段对原煤以及过程产物的化学结构进行表征,结果表明高温石墨化显著改善了小发路无烟煤的微晶结构,晶粒尺寸增加,平均芳香层数可达54.84,有利于后续氧化插层形成氧化石墨烯;氧化反应产生了大量含氧官能团,增加了煤基氧化石墨烯的缺陷度(I_(D1)/I_G=2.06),层间距可达0.790 nm;还原氧化石墨烯表面含氧官能团大幅度减少,缺陷度减小至1.58,芳构碳的有序度增加,成功制得煤基石墨烯;透射电镜下发现小发路无烟煤晶格条纹大部分为无定向弯曲,层间堆垛较厚,所制备的煤基石墨烯则呈透明薄层状,表面含有较多翘曲,边缘处可观察到线性晶格条纹,层数达3~5层。小发路无烟煤的含氧官能团以酚、醇、醚、酯为主,羧基含量较低,羟基共检测到环状羟基、与醚作用形成氢键的羟基、羟基间氢键相连的羟基、与芳香体系形成氢键的羟基以及自由羟基等5种,氧化后的煤基氧化石墨烯表面含氧官能团以醚和/或环氧化物、自缔合羟基和OH—醚氧键/环状羟基和羧基为主,而还原后煤基石墨烯中剩余的少量含氧官能团主要为醚和/或环氧化物,其稳定性较强,通过水合肼还原难以消除。  相似文献   

4.
通过工业分析和元素分析测试技术,结合固体核磁共振碳谱(13 C-NMR)、傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)科学手段,对毕节和龙岩地区的无烟煤进行结构表征.结果表明:①毕节无烟煤结构的桥碳比为0.16;芳香族结构为苯环、萘和吡咯,个数分别为7、8、1;脂肪族结构由氧接脂碳和甲基构成,个数分别为4...  相似文献   

5.
煤基石墨是石墨的重要组成部分,兼具金属和非金属的优良特性,是新兴产业的重要原材料。我国煤基石墨资源储量丰富,开发利用程度低,资源应用潜力巨大。基于当前煤基石墨勘探开发取得的重要成果及现代分析测试技术方法,探讨了接触变质作用叠加岩浆流体热作用的煤基石墨成因机制和演化规律。借助HR-TEM、XRD、Raman及磁阻等测试方法分析了煤基石墨结构表征参数,综合前人以成分指标H/C和结构指标中晶面间距d_(002)及拉曼积分面积比R_2划分煤基石墨与无烟煤的具体值,结合国家政策导向和煤基石墨原材料资源优势及石墨烯采选制备工艺方法,参照太西煤制烯的转化工艺提出以煤基石墨为前驱体制备石墨烯的构想。  相似文献   

6.
分子模拟可从分子尺度探究高煤级煤石墨化过程中微晶结构的演化,对煤系石墨的成矿机理和开发利用具有重要意义。构建高煤级煤的分子结构模型是对其进行分子模拟的基础。通过工业分析、元素分析、核磁共振碳谱(13C-NMR)、傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)等手段,对陕西凤县地区赋存于石炭系草凉驿组含煤地层中的高煤级无烟煤的分子结构进行了研究,发现凤县无烟煤的芳香结构以萘、蒽和菲为主;脂肪碳以亚甲基、次甲基、脂肪侧链和环烷烃的形式存在,其中脂肪侧链以短链为主;含氧官能团以酚羟基和醚氧基为主,还含有少量的羰基;吡咯型氮是氮元素的主要赋存形态;硫元素的主要赋存形式是硫醇硫酚。依此构建了其大分子平均结构模型,并对构建的模型进行了结构优化和退火动力学模拟。经退火动力学模拟后,模型的总能量明显降低,模型中的芳香片层趋于规整的平行排列。在最终模型的能量构成中,非键结势能大于键结势能,是保持煤结构稳定的主要因素。范德华能在非键结势能中占主导地位,归因于高煤级煤中芳环之间的π-π相互作用,该作用是保持高煤级煤结构稳定的主要能量来源。本研究对凤县高煤级煤分子结构模型的构建为从分子尺度研究高煤级煤石墨化的微晶结构演化提供了模型基础。  相似文献   

7.
以太西无烟煤为原料,分别加入不同质量的二氧化硅、二氧化钛、氧化铁为添加剂,采用高温石墨化处理制备煤基石墨。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、激光共焦拉曼光谱仪(RAMAN)、全自动比表面积和孔径分析仪(BET)等手段表征煤基石墨微观结构。研究表明经2 800℃高温热处理后,所得煤基石墨的石墨化度均超过89%,显著改善了无烟煤无序的微晶结构,实现了煤中sp2杂化碳原子有序化重排;在相同的添加剂混入水平下,以二氧化钛为添加剂的煤基石墨的石墨化程度、堆砌高度相对较高,层间距与理想石墨层间距差异最小,碳材料有序度越高;拉曼光谱显示不同添加剂作用下煤基石墨的有序度差异明显,并同步受添加剂用量影响,各添加剂中TXSC3、TXTC2和TXIC3煤基石墨的有序度最高;扫描电镜下发现在3种添加剂条件下,可分别制备出鳞片状,球形以及2种形貌兼具的煤基石墨;各煤基石墨的比表面积和孔径分布数据显示具有相似的低温氮气吸附-脱附等温线。  相似文献   

8.
为探讨以煤为含碳前驱体,利用激光诱导技术制备煤基石墨烯的可能性,选择以挖金湾高挥发分烟煤、塔山低挥发分烟煤为碳源,运用激光诱导技术制备煤基石墨烯,并应用拉曼光谱(Raman)、X射线衍射光谱(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)和高分辨率透射电镜(HRTEM)对原煤以及激光辐照后的产物进行表征。结果表明,经过激光辐照后,产物的Raman图谱呈现出典型的2D峰以及尖锐的G峰,表明其结构有序度增强。XRD图谱表明其(002)和(100)衍射峰变得窄而尖锐,层间距均为0.345 nm。XPS结果表明烟煤激光辐照后sp2的C=C键和π—π作用增强,这表明产物形成了sp2网状芳香层片。通过SEM观察到的激光辐照后样品出现分层多孔结构,同时HRTEM结果显示出芳香条纹具有少层石墨烯特征,石墨烯层数多集中在2~10层,且条纹间距均为0.346 nm,与XRD得到的结果基本一致。这些分析结果表明烟煤在激光辐照后形成了煤基石墨烯。但是,受所用样品数量限制,此研究结果只是初步认识,在下一步研究中需要增加样品数量以深入研究。  相似文献   

9.
煤化作用和石墨化作用共同控制煤的形成和演化,因煤物质成分、化学结构的复杂性和石墨化作用的特殊性,使得研究煤大分子结构热演化过程非常困难。为了探索煤化过程和石墨化过程中的大分子结构变化特征,通过煤质分析、固体核磁共振、高分辨率透射电镜(HRTEM)、黄金管热模拟等实验技术和Amsterdam Modeling Suite (AMS)量子化学计算技术,对不同煤阶煤和煤系石墨样品进行测试分析,从大分子量子化学角度构建不同煤阶煤的有机大分子结构,以揭示煤的有机质大分子碳结构演化及石墨化机制。(1)随着成熟度升高,煤大分子结构中芳香结构的占比逐渐增大,脂肪结构含量逐渐减小,芳碳率在无烟煤阶段达到0.9以上;(2)低煤级煤和中煤级煤大分子中2×2、3×3尺寸的芳香条纹含量占比最大,随着成熟度的升高优势方向(75°、90°和105°)条纹占比由26.47%增至50.10%,在无烟煤和高级无烟煤阶段出现芳香条纹堆叠现象;(3)利用构建的三维大分子结构模型开展热解模拟计算,发现随着模拟温度升高,芳香层片间距有规律的减小,从0.400 nm降至0.318 nm,这与低煤阶煤到高煤阶煤芳香层片层间距从0.4...  相似文献   

10.
从分子层面认识煤的分子结构特征对实现煤炭合理利用及高效转化具有重要意义。以淮北矿业集团青东煤矿煤为研究对象,通过工业分析、元素分析、核磁共振碳谱(13C-NMR)及X射线光电子能谱(XPS)等测试方法,对其分子结构进行研究。结果表明,青东煤的芳香化合物以2、3环结构为主;脂肪结构以甲、乙基侧链及环烷烃形式为主;分子结构中芳香桥碳与周碳比为0.35。氧原子以羰基和酚羟基形式存在,氮原子分别以吡啶和吡咯形式存在,硫原子含量较低,在该模型中不再考虑。依此构建青东煤大分子平均结构模型,其分子式为C142 H128 N2 O3,分子量为1910.60。煤的大分子结构中芳香结构单元包括2个苯环、2个萘、4个蒽;杂原子以2个羰基和1个酚羟基、1个吡啶和1个吡咯的形式存在。对单个大分子结构模型进行结构优化和退火动力学模拟研究,桥键、脂肪键等化学键发生了明显的扭转,分子内芳香片层之间的π—π相互作用使相邻芳香片层之间趋于近似平行排列;总势能由2121.14 kJ/mol下降到1255.85 kJ/mol,其中键伸缩能及范德华能占主导地位。将18个青东煤大分子模型构建成聚集态结构模型。经过分子力学和分子动力学模拟优化后,大分子受周围分子的制约,原本近似平行排列的片状芳香碳结构发生扭曲形变,结构杂乱。研究构建的青东煤大分子结构模型可为选择浮选药剂提供模型基础。  相似文献   

11.
不同变质程度煤的碳结构特征及其演化机制   总被引:4,自引:0,他引:4       下载免费PDF全文
应用X射线衍射(XRD)与核磁共振碳谱测试(13C-NMR)相结合的方法,对5个不同变质程度煤(WMC长焰煤、LL3焦煤、LL4焦煤、CZ无烟煤与SH无烟煤)的碳结构特征及其演化进行了研究。结果表明:(1)变质程度是影响煤中碳结构演化的最重要因素。随着煤变质程度的增加,煤中芳碳率增大,芳香核缩聚程度增加,芳香结构单元排列趋于有序。(2)变质环境对煤的碳结构演化具有重要影响。高温低压环境下,WMC煤中芳香结构单元发生超前演化,形成一系列堆垛高度大延展度小的芳香结构体系;脂肪类物质中,一方面脂肪侧链发生快速热解,形成较多的环甲基,另一方面煤中已有的脂肪环发生热解断裂,形成新的脂肪链,导致支链化程度增加。(3)中等变质程度的LL4与LL3煤中发生了显著的脂环化作用,导致其季碳含量明显增高,支链化程度降低。(4)随着变质程度增加,CZ与SH煤样中,脂肪环发生断裂,形成新的脂肪链致使支链化程度增加,成为高变质程度煤中形成更大芳香体系的前奏。  相似文献   

12.
酸碱除灰对煅烧无烟煤结构和灰分的影响   总被引:1,自引:1,他引:0  
采用X射线和X射线荧光光谱仪对经过常规NaOH-HCl脱灰处理的煅烧无烟煤及灰分进行晶体结构、灰分物相及灰分成份分析。结果表明:脱灰处理能脱出碳微晶层片内的灰分,使层面间距由0.34466 nm减小至0.34386 nm,但同时对微晶单元具有一定的解体作用,微晶高度由10.78782降至8.95094 nm,层片碳环数由153降至123个。灰分中各种元素的含量都有较大程度的降低。  相似文献   

13.
针对煤分子建模方法较多且不统一的现状,本文从微观角度出发,选取对分子结构影响较小的物理方法,探究了褐煤大分子结构并对其进行优化,提出了一种较为简便的煤大分子建模方法.基于元素分析、核磁共振碳谱测试及X射线光电子能谱测试的实验方式,利用分子动力学模拟软件对褐煤进行了分析研究并搭建分子结构模型.研究表明,褐煤大分子中芳香结...  相似文献   

14.
高品质煤沥青是制备炭材料的优质原料,从低阶煤快速干馏焦油渣(DDTR)中提取高品质煤沥青对提高低阶煤的清洁、高附加值利用具有重要意义,而煤沥青分子结构信息的准确获取则可有效指导其高附加值利用。为了回收DDTR中的富碳有机物(煤沥青),分别以洗油(WO)、四氢呋喃(THF)和正丁醇(BA)作为溶剂对DDTR进行萃取后得到WOS、THFS和BAS共3种煤沥青。结合煤沥青的工业分析、元素分析结果,通过傅里叶变换红外光谱(FTIR)结合分峰拟合、核磁共振氢谱(1H-NMR)、气相色谱联用质谱(GC-MS)、热重分析(TGA)和热重红外联用(TG-FTIR),分别对3种煤沥青的基团组成、芳香性、分子结构、热解行为和氧化行为进行详细研究。结果表明:煤沥青的芳香性和分子量是影响软化点(SP)、结焦值(CV)、甲苯不溶物(TI)和热解行为的重要因素,且呈正相关。其中,WOS的着火点较高且氧化过程强烈,适合氧化改性,而THFS则相反。萃取得到的3种煤沥青几乎都不含喹啉不溶物(QI)且芳香性指数(fa)均大于0.70,属于高品质的煤沥青。  相似文献   

15.
《煤炭技术》2016,(1):290-292
对传统的酸碱法制备超纯煤工艺进行了改进。以内蒙古鄂尔多斯的烟煤和无烟煤为原料,采用酸碱法对煤进行脱灰处理,研究了煤的粒度、焙烧温度、碱煤比、焙烧时间和酸浸条件对脱灰效果的影响,在优化的工艺条件下,得到灰分含量小于0.5%的超纯煤。  相似文献   

16.
为给制备煤基纳米复合材料提供参考,对利用酸脱灰、碱脱腐植酸、空气氧化3种化学预处理方法制备的神府脱灰煤样、脱灰脱腐植酸煤样和脱灰氧化煤样,采用低温液氮吸附试验对各煤样的孔隙结构特征进行了研究.结果表明:酸脱灰、碱脱腐植酸、空气氧化处理对煤粉的孔径分布有明显影响,化学预处理后煤粉的总孔容和比表面积均减小,平均孔径增大,各孔径段孔隙数量减少,其中微孔数量减少最为明显.化学预处理过程对煤样的孔隙类型影响较小,原煤样和预处理煤样均以一端封闭的不透气性孔为主.神府煤粉经过以上3种化学方法处理后,其比表面积和孔体积分形维数均减小,孔隙结构特征得以改善,煤粉孔隙系统复杂程度降低,更适合作为制备煤基功能复合材料的基体.  相似文献   

17.
晋城无烟煤的分子结构特征分析   总被引:3,自引:0,他引:3       下载免费PDF全文
利用工业分析、元素分析、核磁共振碳谱(13C-NMR)、高分辨率的透射电镜(HRTEM)、红外光谱(FTIR)和X射线光电子能谱(XPS)对晋城无烟煤进行了分析,对其化学结构获得了较为全面的认识。采用变接触时间和偶极去相方法相结合的13C-NMR技术以及HRTEM检测对其微晶条纹芳核结构进行了统计分类。结果表明:此类煤结构中桥碳比为0.46,平均结构单元分子质量为398,煤中的芳核结构缩合程度较高,芳香层片以苯并蒽,苯并芘以及尺寸更大的芳香环为主。对FTIR与XPS检测结果进行分峰拟合结果表明:芳香环取代度较高。煤中氮含量较少,以有机氮和无机氮的形式存在。煤样中硫主要以有机硫的形式存在,无机硫含量较少。煤中氧含量很少,且主要分布于脂肪烃结构中。煤样脂肪结构中侧链短,且分支度小。利用上述信息,初步构建了晋城无烟煤平均结构单元分子模型,其平均结构单元分子式为C30H22O0.5N0.5,为煤的大尺度分子聚集体结构模型构建提供基础。  相似文献   

18.
郭德勇  叶建伟  王启宝  郭晓洁 《煤炭学报》2016,41(12):3040-3046
利用傅里叶红外光谱(FTIR)和核磁共振(13C NMR)技术对平顶山矿区不同变形程度构造煤和原生结构煤的分子结构差异进行了分析。红外光谱分析表明,构造煤的生烃潜能('A')和脂肪链长及支链化程度(B)均小于原生结构煤,芳脂比(I)大于原生结构煤,缩合度(DOC)变化不明显;随变形程度的增加,构造煤生烃潜能('A')逐渐减小,缩合度(DOC)逐渐增加。核磁共振分析结果显示,官能团对煤中芳碳率和脂碳率的变化有一定贡献,芳碳区存在显著差异的主控因素为带质子芳碳和桥接芳碳(fH,Ba),脂碳区中的主要影响因素是亚甲基碳(fb2);随变形程度的增加,构造煤中亚甲基碳(fb2)逐渐减小,带质子芳碳和桥接芳碳(fH,Ba)逐渐增加。通过对构造煤化学结构的傅里叶红外光谱和核磁共振分析,进一步揭示了构造煤在煤与瓦斯突出中的作用。  相似文献   

19.
煤炭直接液化残渣的合理与有效利用,可提高液化过程的资源利用率及经济性,残渣半焦的表征特性对其后续利用有着显著的影响。以神华煤直接液化残渣半焦为研究对象并与其脱灰残渣半焦进行对比分析,采用能谱扫描电镜、X射线衍射仪及物化吸附分析仪等试验手段,考察神华煤直接液化残渣半焦及其脱灰残渣半焦的表征特征。结果表明:残渣半焦的主要组成部分为片层状结构和颗粒状结构,在片层状结构中分布有微米级圆形和椭圆形孔道及空隙,颗粒状结构较多,主要附着在片层状结构的外表面且成团聚状。脱灰残渣半焦的主要组成部分为片层状结构、颗粒状结构和植物细胞状结构,在植物细胞状结构中分布有微米级圆形和椭圆形孔道及空隙,颗粒状结构较少且成离散状。残渣半焦中主要含有碳、氧、铁、硫和硅,脱灰残渣半焦中主要含有碳和氧元素。残渣半焦和脱灰残渣半焦均含有芳香碳微晶和脂肪碳微晶,脱灰残渣半焦的芳香碳微晶层片定向程度更好,残渣半焦样品的尖峰确定为CaS、SiO_2、Fe2O_3。残渣半焦的比表面和孔容显著大于脱灰残渣半焦,脱灰残渣半焦较残渣半焦有更多的微孔,但脱灰残渣半焦的中孔显著少于残渣半焦,说明在脱灰过程中产生微孔。  相似文献   

20.
介绍了京西煤田无烟煤分布、储量及煤质特征。研究表明,京西无烟煤是一种低灰、低硫的高煤阶无烟煤,其变质程度是所有无烟煤矿区中最高的。根据其煤质特征,京西无烟煤可作为良好的高炉喷吹用煤和民用燃煤,通过动力配煤,也可作为工业锅炉燃料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号