共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
岩石破裂破碎实质是一个能量吸收与耗散的过程,煤矿岩巷钻爆掘进过程中,既要有足够的爆炸能量使待开挖区岩石破裂破碎和抛掷、形成空腔,又要控制爆炸能量对保留岩体造成的损伤,尤其是冲击荷载作用时强度较低的泥岩的动态响应特性更需要重点研究。以淮南矿区典型巷道泥岩为研究对象,利用直径50 mm分离式Hopkinson试验装置开展不同冲击气压下泥岩动态压缩试验,研究在冲击荷载作用下泥岩的动态力学性能和破裂破碎特征,重点研究动荷载作用下泥岩的能量耗散规律。为了进一步揭示泥岩动态破碎破裂与泥岩构成主要化学成分与细观结构之间的关系,对泥岩的静态物理力学性能进行了测试并进行泥岩的X射线荧光光谱(XRF)和X射线衍射(XRD)测试,确定其主要组分、化学和颗粒成份;同时采用放大1 000倍的电子数码显微镜对泥岩试件表面、断口进行放大观察,从岩石细观结构出发,通过对细观结构变化、物理与力学过程的分析研究了岩石的损伤及其演化。结果表明:泥岩的主要化学成分主要为Si O2,其次为Al2O3,Fe2O3,其力学强度低,物理性能指标差,在冲击荷载作用下,泥岩内部大量空隙缺陷(如空穴,位错,微裂隙等)动力学过程加剧,形成损伤;在应力波的持续作用下,大量的微损伤和微观不均匀处在试件内部进行复杂的演化,在颗粒内部结构、沿颗粒间裂缝和沿晶粒界会产生大量的微裂纹并发展,在构造边界碎片分层、夹杂物中也产生裂纹,泥岩试件最终产生环向断裂破坏和轴向劈裂拉伸破坏;试件吸收能、透射能和反射能均随入射能增加而增加,分别呈线性、对数和二次函数形式增长;试件吸收能可以用单位体积耗能密度、单位质量耗能和吸收阻抗比能表征,三者均随入射能增加呈线性增长,随应变率呈二次函数增长。 相似文献
3.
为研究应变率和含水率对冻土能量耗散的影响,通过■50 mm分离式霍普金森压杆(Split Hopkinson Pressure Bar)动力学试验,综合研究了不同冲击速度(4~10 m/s)、不同含水率条件(9%~18%)下冻结黏土的能量耗散特性。试验结果表明:(1)从耗散能的角度将冻土破坏吸能过程分为3个阶段:缓慢增长、快速增长和趋于稳定阶段;耗散能、反射能和透射能与入射能间呈一次函数正相关(R2>0.94),且入射能、反射能、透射能和耗散能与平均应变率间也存在线性正相关关系(R2>0.87);随含水率增加,能量反射系数、能量透射系数和能量耗散系数分别呈先递减后增加、先递增后减少和先递增后减少趋势。研究成果为冻土区爆破工程施工提供借鉴参考。 相似文献
4.
5.
为探究煤在冲击破坏中表现出来的动力学特征,使用直径50 mm分离式霍普金森压杆装置试验系统对煤样进行不同应变率下的冲击破坏实验。结果表明:碎裂过程可以分为4个阶段,分别是压实阶段、线弹性阶段、裂纹扩展阶段、破坏阶段。在不同应变率下,煤样的应变随时间的增加而增加,应变率越大,煤样的应变-时程曲线斜率越大;煤岩的动态变形模量和动态抗压强度随应变率的增大而增大,并在一定范围内波动;煤样冲击破碎块度分布和应变率有明显的相关性。 相似文献
6.
我国深部开采过程中,围岩处于显著的高应力扰动环境。动载作用下岩石拉伸力学特性的研究,是实现矿井围岩稳定性有效控制及安全生产的重要基础。利用分离式霍普金森压杆(SHPB)试验系统,对煤层顶板砂岩进行动态巴西圆盘试验。研究结果表明:砂岩动态拉伸强度随加载速率的升高逐渐增强,这种依赖性在较高加载速率时更加显著;砂岩动态拉伸破坏经历主裂纹产生、微裂纹发育及裂纹相互贯穿3个阶段;随着加载速率的升高,试样破坏方式逐渐从单一张拉破坏逐渐发展为张拉破坏与局部剪切破坏共存,碎块平均体积逐渐减小,破坏程度逐渐提高;试验过程中,试样破坏所需的耗散能量随加载速率的升高逐渐增加,并且其占输入能量的比例逐渐提高,即砂岩破坏过程中能量利用率逐渐提高。 相似文献
7.
为研究冲击强度对岩石动态力学特性的影响,以改装的霍普金森压杆(SHPB)装置对砂岩进行了不同冲击强度下的动力学试验,测得了动态应力-应变曲线和应力波波形。然后,基于试验数据分析了冲击强度对砂岩强度、应变特性以及能量耗散规律的影响。结果表明:动态应力-应变曲线未出现压密阶段直接进入弹性阶段,冲击强度越大,应力-应变路径越长;岩样以破碎形态为主,破碎程度与冲击强度呈正相关;随着冲击强度增大,平均抗压强度和平均应变呈线性增长,而平均应变率呈指数增长;平均抗压强度和平均弹性模量随平均应变率呈线性增加。冲击强度越大,入射能和反射能值显著提高而透射能变化不明显,透射系数和反射系数分别呈幂函数增长和对数降低。砂岩吸收能随冲击强度和平均抗压强度分别呈指数关系和对数关系。由此表明,不同冲击强度对砂岩应变特征、强度特征以及能量耗散具有显著影响,适当增加冲击强度可有效提高砂岩吸收能,进而提高破岩效果。 相似文献
8.
9.
为研究玄武岩在循环冲击作用下的能耗特征及损伤,采用带围压装置的霍普金森压杆(SHPB)系统设置5种冲击气压梯度对玄武岩试样开展单轴冲击试验和两种围压状态下的循环冲击试验。研究发现,随着循环次数增加,试样单位体积吸收能呈现前期匀速缓慢增长,临近破碎时增长速率急剧攀升的趋势,玄武岩试样单位体积吸收能与冲击气压值呈正相关;施加围压可大大增加玄武岩抵抗外部冲击的能力,破碎时累计比能量吸收值比无围压状态提升10倍以上;随着循环冲击次数的增加,损伤因子D先匀速上升,而后上升速率加大,临近破碎时,岩石吸能效率下降,损伤因子又趋于平稳;损伤因子D达到0.4左右时,玄武岩试样出现较为明显的剪切裂纹。 相似文献
10.
为研究煤样动态拉伸变形破坏过程中的能量耗散规律,利用分离式霍普金森杆冲击加载系统,对煤样进行冲击条件下巴西圆盘劈裂试验,探讨了冲击速度、层理倾角及饱和含水对煤样总吸收能密度、总耗散能密度和损伤变量的影响;同时将煤样破碎后产生粒径为0~0.2 mm和0.2~5 mm的碎屑进行收集,并对不同尺寸碎屑的分布特征进行了对比分析。研究表明:同一层理倾角的自然煤样损伤变量随着冲击速度的增加呈近似线性增加,饱水煤样损伤变量整体随冲击速度增大呈指数函数增加;相比于自然煤样,饱水煤样粒径为0~0.2 mm的碎屑量减少了14.1%~31.3%,粒径为0.2~5 mm的碎屑量减少了33.7%~53.0%;但当层理倾角为45°时,饱水煤样碎屑量质量百分比反而比自然煤样要大。 相似文献
11.
为研究冲击载荷下预制孔洞煤样力学特性及能量耗散规律,制备含轴向孔洞的直径50 mm,高50 mm圆柱体煤样,利用分离式霍普金森压杆(SHPB)装置,开展8个孔洞尺寸和3个冲击气压水平的加载试验研究,借助平面场应变测量技术(VIC–2D)和高速摄像机,分析了冲击加载过程中试件动态应力、动态应变、裂纹演化、破坏失效及能量耗散特性。结果表明:(1)在试验涉及的孔洞直径范围内,冲击载荷下完整与孔洞煤样动态应力–应变过程均呈现微裂隙压密阶段、弹性阶段、塑性阶段和破坏阶段。同一冲击气压下,随孔径增大,煤样动态抗压强度、动态峰值应变均降低;孔径由0增大至8 mm时,煤样动态抗压强度和峰值应变下降出现快–慢分区特征。与完整煤样以拉伸裂纹破坏为主不同,孔洞煤样主要以拉伸裂纹–剪切裂纹复合破坏为主,且随着孔径增加,试件内部裂纹扩展能力变弱。(2)揭示了冲击载荷下孔洞煤样的能量耗散规律:孔洞煤样透射能、吸收能与孔径呈负相关,反射能与孔径呈正相关,这主要由孔洞改变试件过波面积造成。随孔径增大,煤样过波面积降低,其吸收能和透射能随之降低,与冲击载荷下孔洞煤样破碎度与孔径负相关结论相一致。研究成果有利于明晰冲击地... 相似文献
12.
以巷道围岩施工过程中受到多次动荷载扰动而变形失稳为背景,利用分离式霍普金森斯压杆对砂岩开展5种冲击气压下的循环冲击试验,探究循环冲击作用下砂岩动力学特性及能量耗散特征。试验结果表明:在较大冲击气压作用下,峰值应力随着冲击次数的增加呈线性下降趋势,峰值应变和平均应变率则随着冲击次数的增加呈线性增长趋势;而在较小冲击气压作用下,随着冲击次数的增加,峰值应力先缓慢下降然后陡降,峰值应变和平均应变率则先缓慢增加然后陡增;随着冲击次数的增加,试件裂纹不断萌生扩展,试件主要呈劈裂破坏,单位体积吸收能表现为两阶段变化趋势,累计比能量吸收能不断增加。 相似文献
13.
14.
在不同的冲击荷载下,岩石会破碎成不同尺寸的块体或颗粒。为了对动态荷载下岩石的吸能特性和动态破碎块体的尺度特征进行定量研究,采用分离式霍普金森压杆系统(SHPB)对煤矿深部砂岩进行了动态压缩试验。得到了不同冲击荷载下岩石试件的动态压缩强度规律,分析了入射能对试件吸收能的影响和应变率效应。在此基础上,利用3D扫描技术、数字图像处理技术得到破碎块体的三维扫描模型,探讨了砂岩试件破碎块体尺度特征与吸收能量的关系。研究表明:砂岩试件的动态抗压强度和吸收能都具有明显的应变率效应,动态抗压强度和动态应变率近似呈线性关系,而吸收能则呈指数型关系;在不同的入射能量下,试件吸收的能量有所不同,吸收能随入射能呈线性增长;在应变率为54~221.9s-1范围内,3D扫描技术能对砂岩破裂块体进行高精度数字重构;随着冲击荷载和输入能量的增大,试件破碎块体的形状逐渐丰富,破碎块体的粒径逐渐减小,比表面积逐渐增大,试件的破碎形态由大块体破断向小块体破碎转变。砂岩材料的破碎成形和能量耗散是材料的率效应机制。 相似文献
15.
岩石试件SHPB劈裂拉伸试验中能量耗散分析 总被引:5,自引:0,他引:5
利用直径50 mm变截面分离式Hopkinson压杆(SHPB)试验装置,对厚径比0.5的煤矿砂岩巴西圆盘试件进行对径加载,采取改变驱动气压的方法实施不同加载速率的动态劈裂拉伸试验。研究了砂岩试件动态劈裂拉伸破坏过程中的能量构成和耗散特征;尝试从能量角度出发,对砂岩试件动态劈裂拉伸破坏形态、平均应变率效应和动态拉伸应力强度进行能耗分析;发现试件吸收能量绝大部分耗散于岩石的损伤演化和变形破坏,可以较好地反映砂岩试件在冲击载荷作用下的抗拉性能变化。结果表明:砂岩试件拉伸应力强度与吸收能量随平均应变率增加近似对数关系增加,表现出显著的应变率相关性。研究成果可为岩石类脆性材料动态拉伸力学性能研究提供参考。 相似文献
16.
冲击载荷作用下煤岩破碎与耗能规律实验研究 总被引:2,自引:0,他引:2
为了探索煤岩在冲击过程中的破坏特征和能量耗散规律,利用Φ75 mm霍普金森压杆(SHPB)实验装置,对煤岩试件进行不同应变率条件下的冲击压缩实验,分析了冲击加载速率对煤岩破碎耗能和块度分布的影响。实验结果表明:在实验应变率范围内,随着子弹速度的提高,应变率和应力波携带的能量均呈线性增长,而煤岩破碎耗散能则呈指数上升。通过对实验碎块进行块度分维,发现随着应变率的提高,试件的耗散能密度快速增大,煤岩碎块的分形维数就越大,块度越细,破坏的程度越剧烈。分形维数与应变率及耗散能密度之间呈对数增长的关系,即分形维数增大的趋势变缓。 相似文献
17.
针对深部工程围岩常处于峰后破裂状态且遭受动力扰动影响的特点,利用动静组合加载SHPB实验装置对经静态压缩制备的峰后破裂砂岩进行冲击压缩试验,开展一维动静组合加载下破裂岩石的力学特性研究。试验中预先设置轴向静载为8,24和48 MPa三个系列,然后进行不同应变率下冲击加载,研究轴向静载对峰后破裂砂岩动力学特性的影响。对比完整砂岩试验结果表明:轴向静载8 MPa和相近应变率条件下,峰后破裂砂岩组合强度与冲击强度均低于完整砂岩组合强度与冲击强度,两者变形模量相差不大,但峰后破裂砂岩单位体积吸收能大于完整砂岩单位体积吸收能。轴向静载相同时,峰后破裂砂岩组合强度与冲击强度均随着应变率的增大而增大;轴向静载不同时,峰后破裂砂岩组合强度随着轴向荷载的增大而增大,而冲击强度随着轴向静载的增大先增大后减小。随着轴向静载的增大,峰后破裂砂岩单位体积吸收能也随之增大。动静组合加载下峰后破裂砂岩呈剪切破坏模式,且原始裂纹影响破裂面的扩展方向。 相似文献
18.
为了研究煤岩的动态破坏特征和动力学损伤特性,利用分离式霍普金森压杆(SHPB)和应力加载系统,对煤岩试样进行了冲击试验和单轴压缩试验;根据应力-应变试验曲线的特征,在过应力模型上,应用连续损伤理论与统计强度理论,建立了适合煤岩动力学特性的过应力损伤模型。结果表明:动载作用下,当应变率较小时,煤岩破碎方式与静载作用时间具一定的相似性;随着应变率的增大,动载破坏强度显著增大,动态模量先增大后保持不变,塑性变形先增大后减小,应力-应变曲线具有明显的塑性流动特性。采用建立的煤岩过应力损伤模型本构方程对试验曲线进行拟合,通过两者的对比,验证了模型的正确性。 相似文献
19.
通过在分离式霍普金森压杆装置上对含孔洞砂岩试件进行冲击试验,探究孔洞尺寸对砂岩动态力学性能的影响。基于试验结果,首先分析孔洞对砂岩岩样的强度和变形特性的影响规律;其次进行能量分析,揭示反射能量比、透射能量比和能量耗散比受孔径大小的影响;最后利用高速相机记录试件裂纹萌生、扩展、贯通直至破坏的全过程,探讨含不同孔径砂岩的裂纹扩展特征。试验结果表明,含孔洞砂岩岩样的力学参数(峰值应力、峰值应变)均显著低于完整岩样,降低幅度与孔洞直径密切相关,随着孔洞直径的增加,含孔洞砂岩的峰值强度与峰值应变均呈小幅减小趋势;在相同入射能量的条件下,随着孔径的增大,反射能量比增大,透射能量比减小,能量耗散率线性增大;随着孔径的增大,承受冲击加载后的试件其内部形成的贯通裂纹增多,试件的破碎块数也增多,且碎块尺寸减小。 相似文献
20.
为研究冲击荷载作用下岩石能量吸收与破碎分形特征,应用霍普金森试验系统对0.6、0.8、1.0、1.2、1.4长径比花岗岩进行动态冲击试验,分析了应变率效应和尺寸效应对花岗岩试件的破碎能耗和破坏形态的影响;在考虑时间因素的基础上,提出一种新的能时密度指标来评价能量耗散,结合分形维数计算与能时密度分析,研究岩石在冲击过程中的能时密度与分形特征。结果表明:0.6 ~ 1.4长径比花岗岩试件的应变率和能时密度均符合乘幂关系,同种长径比试件的能时密度随应变率增大呈递增趋势;在48.8 ~124.2 s-1应变率区间内,分形维数随应变率增加显著增大;花岗岩试件在动荷载下的能时密度和分形维数符合乘幂关系,单位时间内岩石吸收能量越多,分形特征就越明显;引用能时密度结合岩石破碎块度的分形维数计算,能够定量研究岩石单位时间内的能量吸收规律。 相似文献