首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 4340 steel is extensively utilized in several industries including automotive and aerospace for manufacturing a large number of structural components. Due to the importance of thermo-mechanical processing in the production of steels, the dynamic recrystallization (DRX) characteristics of 4340 steel were investigated. Namely, hot compression tests on 4340 steel have been performed in a temperature range of 900–1200 °C and a strain rate range of 0. 01–1 s?1 and the strain of up to 0. 9. The resulting flow stress curves show the occurrence of dynamic recrystallization. The flow stress values decrease with the increase of deformation temperature and the decrease of strain rate. The microstructure of 4340 steel after deformation has been studied and it is suggested that the evolution of DRX grain structures can be accompanied by considerable migration of grain boundaries. The constitutive equations were developed to model the hot deformation behavior. Finally based on the classical stress-dislocation relations and the kinematics of the dynamic recrystallization; the flow stress constitutive equations for the dynamic recovery period and dynamic recrystallization period were derived for 4340 steel, respectively. The validity of the model was demonstrated by demonstrating the experimental data with the numerical results with reasonable agreement.  相似文献   

2.

To determine the flow behavior of SUS304 stainless steel under different conditions, axisymmetric compression tests were conducted over a wide range of forming temperatures (25 °C to 400 °C) and strain rates (10−3 to 10 s−1). Flow curves were obtained for different forming conditions to study the influence of the forming temperature and strain rate on the flow behavior. Moreover, electron backscatter diffraction analysis, X-ray diffraction analysis, transmission electron microscopy, and Feritscope were used to study the microstructure evolution of SUS304 stainless steel under different conditions for determining the underlying reasons for the variations in flow behavior. The experimental results indicated that the flow stress decreased with increasing the forming temperature. With increasing strain rate at 25 °C to 200 °C, the flow stress first increased and then decreased; however, the strain rate had little effect on the flow stress at 300 °C and 400 °C. By analyzing the variation in the phase transformation inside compressed SUS304 stainless steel samples under different forming conditions, the key factors affecting the flow behavior of stainless steel were identified. Finally, by examining the variation in the martensite content and the dislocation density, the dominant deformation mechanism under different forming conditions was determined.

  相似文献   

3.
The true stress–strain curve of Cu–Fe16Mn0.6C twinning induced plasticity (TWIP) steel was studied with a compression test on Thermecmastor‐Z thermal simulator at a temperature range of 850–1150°C and strain rate range of 0.03–30 s?1. The influence of deformation temperature and strain rate on high‐temperature flow stress and critical recrystallization behavior of the TWIP steel was investigated. It is concluded that the peak flow stress of Cu–Fe16Mn0.6C under high‐temperature deformation decreases as the temperature increases but increases with the strain rate. Meanwhile at strain rate of 0.03 and 30 s?1 obvious peak stresses are observed which demonstrates the dynamic recrystallization. The constitutive equation of Cu–Fe16Mn0.6C under high temperature deformation is calculated by linear regression method. The activation energy is 505 kJ mol?1. The relationship between critical strain of dynamic revrystallization and Zener–Hollomon parameter is determined by the curve between strain‐hardening rate and flow stress.  相似文献   

4.
原凌云 《特殊钢》2019,40(4):1-3
采用Gleeble-3800型热模拟机试验研究了34CrMo4H钢在900~1200℃、应变速率0.1~10s-1时的高温热压缩行为,分析了热压缩变形时材料的流变应力与变形温度、应变速率之间的关系,确定了该钢的流变应力本构方程。结果表明,34CrMo4H钢在热压缩时流变应力随形变温度的升高而减小,随应变速率的增加而增大。应变速率小于0.1 s-1时,该钢应力-应变曲线表现出明显的动态再结晶特征。34CrMo4H级钢的变形激活能为395.45kJ/mol。  相似文献   

5.
6.
成生伟 《特殊钢》2019,40(1):4-6
用Gleeble-3800热模拟机研究了CL70车轮钢在应变速率0. 01~10s-1、900~1300 ℃时的高温热压缩行为,分析了热压缩变形时该钢的流变应力、变形温度及应变速率之间的关系,通过线性回归确定该钢流变应力本构方程。结果表明,CL70钢在高温压缩时流变应力随变形温度的减小而增大,随应变速率升高而增大。当应变速率≤1 s-1时,CL70钢的流变应力曲线表现为动态再结晶特征。CL70钢的热变形激活能为401.06 kJ/mol。  相似文献   

7.
To study the hot deformation behavior of Mg–8.3Gd–4.4Y–1.5Zn–0.8Mn (wt%) alloy, hot compression tests were conducted using a Gleeble–3500 thermal simulator at temperatures ranging from 653 to 773 K, true strain rates of 0.001–1 s?1, and a deformation degree of 60%. Results of hot compression experiments show that the flow stress of the alloy increases with the strain rate. The true stress–true strain curves are corrected by correcting the effect of temperature rise in the deformation process. Activation energy, Q, equal to 287380 J/mol and material constant, n, equal to 4.59 were calculated by fitting the true stress–true strain curves. Then, the constitutive equation was established and verified via finite element simulation. Results of the hot processing map show that the probability of material instability increases with the degree of deformation, which indicates that the material is not suitable for large deformation in a single pass. On the whole, the alloy is appropriate for multipass processing with small deformation and a suitable processing temperature and strain rate are 733 K and 0.01 s?1, respectively.  相似文献   

8.
Tensile tests were performed at strain rates ranging from 3.16 × 10?5 to 1.26 × 10?3 s?1 over a temperature range of 300 K to 923 K (27 °C to 650 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of P92 ferritic steel. The variations of flow stress/strength values, work hardening rate, and tensile ductility with respect to temperature exhibited distinct three temperature regimes. The fracture mode remained transgranular. The steel exhibited serrated flow, an important manifestation of dynamic strain aging, along with anomalous variations in tensile properties in terms of peaks in flow stress/strength and work hardening rate, negative strain rate sensitivity, and ductility minima at intermediate temperatures. At high temperatures, the rapid decrease in flow stress/strength values and work hardening rate, and increase in ductility with increase in temperature and decrease in strain rate, indicated the dominance of dynamic recovery.  相似文献   

9.
武敏  廉晓洁  曾莉  李国平 《钢铁》2013,48(6):54-60
 为研究热变形参数对铸态超级双相不锈钢S32750热变形行为和显微组织的影响,运用Gleeble-3800热模拟试验机对S32750进行不同温度和应变速率下的高温拉伸和压缩试验。结果表明,S32750在1000~1200℃范围内具有较好的热塑性。在变形温度较低、应变速率较低时,流变曲线表现出不同于单相不锈钢的“类屈服平台”特征;当应变速率较高或变形温度较高、应变速率较低时,流变曲线为典型的动态再结晶特征。微观组织演变显示,铁素体和奥氏体两相都发生动态再结晶,且铁素体的再结晶先于奥氏体。降低应变速率,提高变形温度,可促进动态再结晶发生。基于热变形动力学模型建立了本构方程,表观应力指数为3.99,热变形激活能为393.75kJ/mol。S32750的高温软化机制与Zener-Hollomon(Z)参数有关,随Z参数增加,热变形峰值应力增加。  相似文献   

10.
The compressive behaviors of medium carbon steel specimens were investigated over a wide range of tem-peratures and strain rates using a Gleeble-3500 thermo-simulation machine.The results show that the flow stress in-creased with strain at first,and then gradually decreased after reaching a peak value.The flow stress softening rate at a high strain rate was larger than that at a low strain rate.The effects of deformation heating and friction on flow stress were analyzed.A new friction correction method,wherein the effect of strain on frictional coefficient was con-sidered,was established here.The stresses revised by the new method deviated from the measured stresses with in-creasing strain.Meanwhile,the apparent frictional coefficient variation law with strain was obtained.The frictional coefficient increased as the strain increased and then slightly decreased after maintaining a constant value.The stress was corrected by considering deformation heating.The accuracy of the temperature correction method was verified using a special experiment.The results of the verification experiment show that the temperature correction method exhibited a good accuracy in calculating the variation of stress caused by deformation heating.A constitutive model considering strain was proposed here to describe the deformation behaviors.Compared with experimental data,the modified constitutive model exhibited a good accuracy as to constitutive correlation.  相似文献   

11.
 采用Gleeble-3500热模拟试验机对55SiMnMo贝氏体钢进行了热压缩试验,得到了其在变形温度为950~1150℃和应变速率为0.01~10s-1条件下的高温流变应力行为。试验结果表明,峰值应力随变形温度的降低和应变率的提高而增大;当应变速率为0.01和0.1s-1,变形温度t ≥1000℃时,发生动态再结晶。基于试验结果,充分考虑了热变形工艺参数(应变、应变速率和变形温度)对流变应力的影响,建立了一种考虑应变速率补偿的高温流变应力本构方程。通过对该本构方程预测得到的流变应力值和试验值对比,验证了模型的准确性。  相似文献   

12.
The austenite dynamic recrystallization (DRX) behavior and microstructure evolution of a bridge weathering steel was systematically investigated at a deformation temperature range of 800–1100°C and strain rate of 0.1–10 s?1 by using hot compression test and optical microscopy. The stress exponent and hot deformation energy were obtained by regression method to determine thermal deformation constitutive equation. The curve of stress versus strain is used, combined with high order polynomial fitting, to accurately determine the critical value of DRX. The relationships between critical strain, critical stress, and Z parameter of the bridge weathering steel were obtained by regression method. Moreover, the influence factors of DRX kinetics of the bridge weathering steel were studied in the light of the experimental results. It is shown that the strain rate has a more significant effect on the rate of DRX than that of the deformation temperature, and there is almost 0.85 orders of magnitude increment in the rate of DRX as the strain rate increases an order of magnitude. The dynamically recrystallized grain size can be decreased with decreasing the deformation temperature and increasing the strain rate during the austenite deformation.  相似文献   

13.
The trend in the variations of the flow stress, obtained in the hot flow curves of materials, reflects the type of microstructural changes that occur during hot deformation. It is also possible to evaluate the kinetics of the relevant microstructural events directly from flow stress data. In the present study, a method for obtaining the kinetics of dynamic recovery from hot deformation flow curves has been proposed and carried out to evaluate the fraction of dynamic recovery in AISI 321 austenitic stainless steel during hot compression deformation in the temperature range of 800–950 °C. Results show that the rate of dynamic recovery is considerably increased by increasing strain rate. It has also been concluded, that the effect of deformation temperature on the kinetics of dynamic recovery is insignificant compared to the effect of strain rate. The flow behavior in a high temperature deformation reflects the type of microstructural changes that occur during deformation and is also possible to evaluate the kinetics of the relevant microstructural events directly from flow curve data. In the present study, a method to evaluate the fraction of dynamic recovery in AISI 321 austenitic stainless steel during hot compression in the temperature range of 800–950 °C has been proposed and carried out. Results indicate that the dynamic recovery process is considerably increased by increasing the strain rate and temperature.  相似文献   

14.
关键词:双相不锈钢; 流变曲线; 本构方程; 热加工图  相似文献   

15.
Tensile tests were performed at strain rates ranging from 3.16 × 10?5 to 3.16 × 10?3 s?1 over the temperatures ranging from 300 K to 1123 K (27 °C to 850 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of nitrogen-alloyed low carbon grade type 316L(N) austenitic stainless steel. The variations of flow stress/strength values, work hardening rate, and tensile ductility with respect to temperature exhibited distinct three temperature regimes. The steel exhibited distinct low- and high-temperature serrated flow regimes and anomalous variations in terms of plateaus/peaks in flow stress/strength values and work hardening rate, negative strain rate sensitivity, and ductility minima at intermediate temperatures. The fracture mode remained transgranular. At high temperatures, the dominance of dynamic recovery is reflected in the rapid decrease in flow stress/strength values, work hardening rate, and increase in ductility with the increasing temperature and the decreasing strain rate.  相似文献   

16.
利用Gleeble 3500热力模拟试验机对22MnB5板材进行高温拉伸试验,研究了该材料在变形温度为700、800和900℃以及应变速率为0.01、0.1、1和10 s-1下的高温变形行为.在同一温度下,22MnB5的断裂应变随应变速率增加而呈现增加趋势,温度升高加剧这种趋势.建立了耦合损伤基于位错密度的统一黏塑性本构模型,该模型考虑了高温变形中损伤的演化规律,能够描述了应力-应变曲线后期的陡降段.利用遗传算法确定并优化该本构模型中的材料常数,所得材料常数确定的本构模型能够较好地预测22MnB5高温拉伸变形下的流变应力,并能较好地描述材料损伤演化规律.   相似文献   

17.
采用单道次热压缩试验,研究了904L钢在不同变形温度、不同应变速率下的真应力-应变曲线以及组织形貌,阐明了热加工过程中热变形参数对其在变形过程中发生的动态再结晶行为及微观组织演变规律的影响,揭示了其相应的软化机制。结果表明:变形温度越高,流变应力越小,动态再结晶体积分数越高,晶粒尺寸越大;同温度下,变形速率越小,应力峰值越小,晶粒尺寸越大且晶界越平直化;904L钢的动态再结晶行为随着变形温度的升高,应变速率的减小,应变量的增大而进行得越充分且较高的变形温度有利于动态再结晶的进行。  相似文献   

18.
??Taking LZ50 steel as deformation material?? the stress- strain curves during hot compression was analyzed. The mathematical model of peak stress and strain?? critical stress and strain?? steady stress and strain as well as the stress and strain at which material exhibited maximum flow softening were established by liner regression method. The hot processing map of LZ50 steel under different strains was plotted to predict microstructure evolution behavior during forging process in order to guide production and processing. The results indicate that work hardening rate increases when temperature decreases or strain rate increases. The hot processing map of Murty criterion is optimum to predict the microstructure evolution of LZ50 steel during hot forming by comparing three different instability criterion??s hot processing maps??Prasad criterion?? Murty criterion and Poletti criterion??. The zone of high temperature and high strain rate hasn??t obvious microstructure defects?? so it??s ??false instability range??. The most optimum range for LZ50 steel deformation is zone of medium temperature and medium strain rate?? such as 1020?? and 0. 5s-1?? where the structure is homogeneous and the grain keeps equiaxed after deformation.  相似文献   

19.
王天翔  胡尚举 《特殊钢》2019,40(6):7-11
在Gleeble-3500热模拟试验机上进行高温压缩实验,研究00Cr26Mo4超级铁素体不锈钢在变形温度为1050~1250℃、应变速率为0.01~10 S-1条件下的热变形行为。采用幂函数、指数函数和双曲正弦模型模拟该材料的热变形参数,建立了相应的热变形本构方程。结果表明,在热压缩过程中,流变应力随变形温度的升高而降低,随应变速率的升高而增加,流变应力并未出现明显峰值,材料的软化机制仅有动态回复。探究了幂函数、指数函数和双曲线函数3种模型与00Cr26Mo4钢本构关系的相关性。结果表明,双曲正弦函数模型更符合00Cr26Mo4超级铁素体不锈钢热加工流变应力应变曲线变化规律,并基于双曲正弦函数模型建立了00Cr26Mo4钢的本构方程,计算了热变形激活能238.836 kJ/mol。  相似文献   

20.
利用Gleeble-3500热力模拟试验机,在温度为1123~1423 K,应变速率为0.1~10 s-1,真应变为0.8的条件下,对一种传动部件用高强度渗碳钢(SAE9310钢)进行了高温轴向压缩试验,测得了SAE9310钢的高温流变曲线,并观察其变形后的显微组织。试验结果表明,SAE9310钢的流变应力和峰值应变随着变形温度的升高和应变速率的降低而减小;SAE9310钢在真应变为0.8的条件下,随着变形速率的提高,其发生完全动态再结晶的温度也逐渐升高,当热变形温度高于1323 K时,应变速率在0.1~10 s-1范围内,试验钢均会发生动态完全再结晶;测得9310钢的热变形激活能Q值为416.78 kJ/mol,并确立了其热变形方程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号