首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of ammonia to nitrogen or nitric oxide was investigated using on the one hand a polycrystalline copper foil and on the other hand deposited copper clusters prepared with the inert gas aggregation technique. The behavior in the oxidation of ammonia of both model catalysts was studied using in situ near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in the soft X-ray range and mass spectrometry. It is shown that the copper foil reacts in a similar way to the copper clusters. Differences appear only with respect to the reaction temperature required, which is lower for the cluster sample. It can be concluded that the results obtained in experiments with polycrystalline copper foil are exemplary for and can be transferred to a supported copper catalyst consisting of small copper particles.  相似文献   

2.
The oxidation of methanol over copper is investigated by X-ray absorption spectroscopy in the soft X-ray range under reaction conditions. This in situ method allows the surface electronic structure of the catalyst to be correlated with its performance. The correlation reveals information about the catalytic function of various oxygen species on the surface. Oxide and metastable suboxide species affect in distinctly different ways the multiple action of copper as selective or unselective heterogeneous catalyst.  相似文献   

3.
The active phase of a bulk metallic copper catalyst is investigated by surface sensitive X-ray absorption spectroscopy at the oxygen K-edge and the Cu L-edges in the total electron yield mode under practical steady state flow-through conditions. The active catalyst surface contains oxygen atoms revealing significant spectral differences compared to those of known copper oxides. The partial oxidation of methanol to formaldehyde is correlated to the abundance of this copper suboxide. These oxygen atoms probe defects of the copper lattice, which represent catalytically active sites. The suboxide is undetectable under UHV conditions. The total oxidation of methanol is catalysed by a conventional copper(I) oxide species and the abundance of carbon dioxide in the gas phase is increasing with decreasing integrated intensity of the oxide species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Some aspects of the electrochemistry of the flotation of pyrrhotite   总被引:4,自引:0,他引:4  
The iron sulfide mineral, pyrrhotite (Fe(1–x)S), has long been known to be more difficult to recover by flotation from alkaline slurries than many other base metal sulfide minerals. This paper summarizes the results of an electrochemical study of the surface reactions that occur during the flotation of nickeliferous pyrrhotite in the recovery of nickel and the platinum group metals. Mixed potential measurements conducted with natural pyrrhotite electrodes in various stages of an operating flotation plant showed that the mineral potential is positive to the equilibrium potential of the xanthate/dixanthogen couple. Similar results were obtained during batch flotation experiments and in synthetic solutions in the laboratory. Cyclic voltammetric and potentiostatic current/time transient experiments were used to investigate the oxidation of pyrrhotite under various conditions. In addition, the reduction of oxygen, the reaction of copper ions and the oxidation of xanthate ions at the mineral surface were investigated. The formation of dixanthogen on pyrrhotite surfaces is thermodynamically favourable in plant flotation slurries. However the interaction with xanthate at pH values above 7 is inhibited by a surface species formed during the conditioning prior to xanthate addition. In acidic solutions copper ions react readily with pyrrhotite to form a species, possibly CuS that can be oxidized at potentials above 0.4 V. At pH 9 this species does not form and there is no electrochemical reaction between pyrrhotite and copper ions. The beneficial effects of copper ions to flotation performance appear to be related to an enhancement of the oxidation of xanthate.  相似文献   

5.
The mechanism of increasing efficiency of amine‐type antioxidant (AO)‐N‐plenyl‐2‐naphthylamine (Neozon D)—used to inhibit oxidation of polyethylene (PE) under conditions of contact between the polymer and metallic copper has been investigated. It has been learned experimentally, that the hypothesis of formation of complex compounds by reaction of AO and copper‐containing products—resulted from contact oxidation of PE melt on copper—is invalid. A different mechanism of raising the inhibiting efficiency of amine AO is suggested, according to which copper catalyzes transformation of Neozon D to nitroxyl radicals. The latter are excellent inhibitors for oxidative transformations and appreciably enhance polymer resistance to oxidation. An amine‐type AO can be converted to nitroxyl radicals in two ways: (i) before AO is added to the polymer; (ii) during direct contact between the AO and metallic copper (i.e., copper as metal) which is a component of the metalopolymeric material (e.g., polymer‐coated substrate; filler particles introduced into a polymer) that is subjected to oxidation. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
An instrumentation is presented allowing to study the X-ray absorption edge spectra of light elements (z=3–15) in the surface-sensitive Auger yield detection at elevated pressures (mbar range). Heterogeneous catalysts can be studied for their surface electronic structure under working conditions in a flow-through reactor mode. An example of methanol oxidation to formaldehyde over copper metal is studied in detail. A new form of weakly bound atomic oxygen was found which only exists under reaction conditions. Its existence is linked to defect sites on the Cu. Several mechanistic predictions from earlier low-pressure studies could be verified with this in situ experiment. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
The adhesion strength of the interface between copper foil and resin is an important technological parameter for applications in microelectronics. In this study, a new brown oxidation solution of copper foil, including the recipe composition and reliability tests, was fully discussed. We provided an overview of brown oxidation process used in the semi-flexible printed circuit boards production industry by investigating the brown oxide film. The morphology of the copper oxide film was changed from lamellar structure to honeycomb structure with the increasing of oxidation time. The peel adhesion strength of the Cu/polyimide laminates was increased from about 2–16 N/cm by altering the immersion time and the concentration of inhibitors in brown oxidation solution. Scanning electron microscopy, peel tests and X-ray diffraction indicated that the higher adhesion strength was resulted from the rougher surface and the proper etching depth of copper foil, which was caused by chemical reactions on the interface surface of copper foil.  相似文献   

8.
CO Oxidation Behavior of Copper and Copper Oxides   总被引:2,自引:0,他引:2  
Carbon monoxide oxidation activities over Cu, Cu2O, and CuO were studied to seek insight into the role of the copper species in the oxidation reaction. The activity of copper oxide species can be elucidated in terms of species transformation and change in the number of surface lattice oxygen ions. The propensity of Cu2O toward valence variations and thus its ability to seize or release surface lattice oxygen more readily enables Cu2O to exhibit higher activities than the other two copper species. The non-stoichiometric metastable copper oxide species formed during reduction are very active in the course of CO oxidation because of its excellent ability to transport surface lattice oxygen. Consequently, the metastable cluster of CuO is more active than CuO, and the activity will be significantly enhanced when non-stoichiometric copper oxides are formed. In addition, the light-off behaviors were observed over both Cu and Cu2O powders. CO oxidation over metallic Cu powders was lighted-off because of a synergistic effect of temperature rises due to heat generation from Cu oxidation as well as CO oxidation over the partially oxidized copper species.  相似文献   

9.
The influence of ammonia and nitric oxide oxidation on the selective catalytic reduction (SCR) of NO by ammonia with copper/nickel and vanadium oxide catalysts, supported on titania or alumina have been investigated, paying special attention to N2O formation. In the SCR reaction, the VTi catalyst had a higher activity than VAl at low temperatures, while the CuNiAl catalyst had a higher activity than CuNiTi. A linear relationship between the reaction rate of ammonia oxidation and the initial reduction temperature of the catalysts obtained by H2-TPR showed that the formation rate of NH species in copper/nickel catalysts would be higher than in vanadia catalysts. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that copper/nickel catalysts presented ammonia coordinated on Lewis acid sites, whereas ammonium ion adsorbed on Brønsted acid sites dominated on vanadia catalysts. The NO oxidation experiments revealed that copper/nickel catalysts had an increase of the NO2 and N2O concentrations with the temperature. NO could be adsorbed on copper/nickel catalysts and the NO2 intermediate species could play an important role in the reaction mechanism. It was suggested that the presence of adsorbed NO2 species could be related to the N2O formation.  相似文献   

10.
In situ generated copper(II)‐diimine complexes combined with TEMPO (2,2,6,6‐tetramethylpiperidinyl‐1‐oxyl radical) were studied in the oxidation of benzylic alcohols, the focus being on enviromentally benign reaction conditions. In this respect, reactions were studied in aqueous alkaline solutions and dioxygen was used as an end oxidant. This simple catalytic system turned out to be highly efficient and selective in the oxidation of primary and secondary benzylic alcohols to their corresponding carbonyl compounds. Under optimised reaction conditions [5 mol % of TEMPO, 3 mol % of copper(II ) diimine, pH 12.6–13.5, 80 °C, 10 bar O2] benzyl alcohol was quantitatively and selectively oxidised to benzaldehyde. According to ESI‐MS studies, coordination of TEMPO, as well as deprotonated benzyl alcohol to the parent copper‐diimine complex in aqueous solutions is feasible. Supported by these observations a plausible reaction mechanism is proposed for the oxidation reaction.  相似文献   

11.
Quasi-steady state hydrodynamic voltammetry at a rotating-disc electrode and electrochemical impedance spectroscopy were used to investigate the influence of triethyl-benzyl-ammonium (TEBA) chloride on the kinetics of copper electrodeposition from sulphate acidic electrolytes. SEM and X-ray diffraction analysis were used to examine the morphology and the structure of copper deposits. The kinetic parameters (i 0, c, k 0), obtained by both Tafel and Koutecky–Levich interpretations lead to the conclusion that TEBA acts as an inhibitor of copper electrodeposition process, as a consequence of its adsorption on the electrode surface. The influence of TEBA on the kinetics of copper electrodeposition was explained in terms of a reaction model confirmed by the simulated impedance spectra. TEBA acts only as a blocking agent competing for adsorption active sites of the cathodic surface with cuprous ions without changing the reaction pathway corresponding to the absence of the additive.  相似文献   

12.
电磁屏蔽导电涂料用镀银铜粉的制备   总被引:2,自引:0,他引:2  
曹晓国  张海燕 《精细化工》2006,23(8):738-742
采用置换反应法制备镀银铜粉时,铜粉还原银氨溶液中的Ag+生成的Cu2+与NH3形成络合物[Cu(NH3)4]2+,它吸附于铜粉表面而阻碍还原反应的继续进行,使制备的镀银铜粉表层的银含量降低。用氨水提高银氨溶液的pH,可增加制备的镀银铜粉表层的银含量,提高其抗氧化性能。当用氨水调节银氨溶液的pH至11.50时,可制得表层银的质量分数高达47.91%且具有常温抗氧化性能的镀银铜粉。研究了pH、AgNO3用量、AgNO3浓度和反应温度对镀银铜粉的抗氧化性能的影响。  相似文献   

13.
采用水热法合成新型催化剂羟基磷酸铜Cu2(OH)PO4,使用XRD、TEM和IR对合成的产物进行了表征。重点研究了溶液pH值对产物的影响,发现中pH对产物生成影响最大。当pH值在7-9之间时为单羟基磷酸铜(Cu2(OH)PO4),pH大于9时得到四羟基磷酸铜(Cu5(OH)4(PO4)2)。使用获得的单羟基磷酸铜(Cu2(OH)PO4)作为催化剂催化氧化苯酚,利用气相色谱对催化剂的催化活性进行了表征。  相似文献   

14.
This work reports the influence of pH on the catalytic wet oxidation (CWO) of phenol performed with a commercial copper-based catalyst. The results obtained show that pH is a critical parameter able to modify the chemical stability of the catalyst, the significance of the oxidation reaction in the liquid phase, the reaction mechanism and, consequently, the oxidation route of phenol. Experiments have been carried out to study the mentioned aspects. Stirred basket and fixed bed reactors (FBRs) have been employed, at 140 °C and at 16 bar of oxygen pressure. Three initial pH values have been used: 6 (the pH of the phenol solution), 3.5 (adjusted by H2SO4) and 8 (by addition of Na2CO3). Furthermore, some phenol oxidation runs without solid catalyst but with different concentrations of copper in solution have been accomplish at pHo=3.5. At acid pH, important leaching of copper from the catalyst to the solution was achieved, finding this negligible at pH 8. It was found that the major contribution to the phenol conversion reached at acid pH by using the solid catalyst was due to the catalytic activity of the leached copper. Both oxidation mechanisms at acid and basic conditions have been elucidated to explain the differences in the type and distribution of the intermediates obtained. The catalytic phenol oxidation route found at pH=8 comprises intermediates less toxic than phenol while at acid pH the cyclic intermediates formed as first oxidation intermediates are far more toxic than phenol.  相似文献   

15.
The formation of ammonia is inevitable during industrial-scale wet oxidation of wastewater if nitrogen-containing compounds are present. This undesired side-reaction requires additional measures for disposal. Common routes are either the use of noble metal-containing catalysts in the first oxidation step or end-of-pipe treatment. Problems rise for example from the insufficient stability of solid catalysts against hydrothermal impact. As most of the wet oxidation processes run at elevated pressure and temperature, running the heterogeneously catalysed oxidation of ammonia in the gas phase in a downstream reactor could protect the catalysts mainly from leaching and offers an economic alternative by avoiding loss of unused oxygen after depressurisation. This work reports on the oxidation of ammonia with air in steam atmosphere using Cu,Cr-containing supported and bulk catalysts at 235–305 °C and 30–60 bar. A copper chromite catalyst gave best performance (86% conversion at 305 °C, 45 bar, contact time 1 s). The spinel-type phase CuCr2O4 seems to be the active phase and shows superior stability. The results indicate that phase behaviour of water strongly influences activity and lifetime of catalysts. Characterisation of the solids (BET, XRD, XPS, ICP) proved that deactivation is mainly caused by leaching of Cr(VI) species from catalysts when the reaction runs near to dew point of water and by loss of BET surface area of supported catalysts due to hydrothermal impact.A member of the EU-funded Coordination Action of Nanostructured Catalytic Oxide Research and Development in Europe (CONCORDE).  相似文献   

16.
在Caterpillar微反应器中采用共沉淀法制备了不同铜锰比的共沉淀物,直接焙烧得到铜锰复合氧化物催化剂。采用X射线衍射(XRD)、热重分析(TG)、拉曼光谱(Raman)和X射线光电子能谱(XPS)对沉淀物和催化剂进行了物相和结构分析。结果显示,随着Cu含量的增加,催化剂中Mn3+所占比例逐渐下降,表面晶格氧含量呈现先上升后下降的趋势,催化甲苯降解的活性呈现先上升后下降的规律。微反应器中的流动反应特性使得催化剂中的Cu、Mn保持良好分散性,有利于提高催化剂中Mn3+含量,此时表面晶格氧成为催化活性的制约因素。  相似文献   

17.
The role of preadsorbed oxygen present at Cu(111), Cu(110) and polycrystalline surfaces in the oxidation of methanol has been investigated by X-ray and electron energy loss spectroscopies. In addition to the well established formation of methoxy species and its subsequent decomposition and desorption as formaldehyde, a second reaction pathway to surface formate is present. The latter is temperature dependent being undetectable at 260 K at a polycrystalline surface but occurs at a significant rate at 295 K and above. The limitations of experimental data for methanol oxidation by temperature programmed desorption and molecular beam techniques are discussed.  相似文献   

18.
以三水硝酸铜为反应物,氨水为络合剂,氢氧化钠为沉淀剂,乙醇水混合溶液为反应溶剂,聚乙二醇为分散剂,采用络合沉淀法,成功制备出平均粒径约20nm的氧化铜单晶纳米粉体。通过单因素实验和正交实验考察了硝酸铜溶液初始浓度、反应温度及氢氧化钠与硝酸铜物质的量比等因素对产物粒径大小的影响,利用x射线衍射(XRD)、透射电镜(TEM)和红外光谱仪(FT-IR)等对产物进行表征分析。研究结果表明,影响其粒径大小主要因素的主次顺序依次是:反应温度,硝酸铜溶液初始浓度及氢氧化钠与硝酸铜的物质的量比;优化制备工艺条件为:反应温度70℃,硝酸铜溶液初始浓度0.3mol/L,氢氧化钠与硝酸铜的物质的量比3:1,氨与硝酸铜的物质的量比5:1;氧化铜纳米粉体的红外吸收峰出现了红移和蓝移同时并存的反常现象。  相似文献   

19.
The corrosion inhibitor of nitrogen-containing amino acid histidine (His) has been applied in brown oxidation solutions and the relationships between brown oxidation solutions with the various concentrations of His and the adhesion strength of copper/resin laminates have been systematically studied by various testing techniques, including electrochemical impedance spectroscopy (EIS), peeling strength and field emission scanning electronic microscope. The result obtained from EIS suggested that His exhibited excellent anti-corrosive performance which contributed to a higher stability of the organic metallic film post brown oxidation process treatment. The roughness surface like honeycomb structure was gained and peel strength of the Cu/resin laminates was raised up to 0.71 kg/cm by altering the concentration of His in brown oxidation solutions. Moreover, theoretical calculations manifested that the studied inhibitor was almost adsorbed in parallel on the copper surface and X-ray photoelectron spectroscopy (XPS) declared that the value of adhesion strength was related to the surface chemistry of copper foil and resins after the lamination process which may attribute to chemical reactions at the copper/resin interface.  相似文献   

20.
A novel and very mild method for the oxidation of primary alcohols to aldehydes with excellent conversions has been developed. The reaction is carried out under air at room temperature and is catalysed using a [copper(II)‐(N ligand)n] complex with TEMPO and a base as co‐catalysts. In this paper, the performance of a series of N‐containing ligands, as well as different copper(II) salt precursors in different solvents are reported. Best results are obtained in acetonitrile/water as solvent using a copper(II) catalyst generated in situ from a Cu(II) salt with weak or non‐coordinating anions and bipyridine ligands with electron‐donating substituents. A reaction mechanism is postulated which resembles that of galactose oxidase, and in which TEMPO seems to be involved as a hydrogen acceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号