首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 875 毫秒
1.
采用化学方法腐蚀部分c面蓝宝石衬底,在腐蚀区域形成一定的图案,利用LP-MOCVD在经过表面处理的蓝宝石衬底上外延生长GaN薄膜.采用高分辨率双晶X射线衍射(DCXRD)、透射光谱分析GaN薄膜的晶体质量和光学质量.分析结果表明,GaN薄膜透射谱反映出的GaN质量与X射线双晶衍射测量的结果一致,即透射率越大,半高宽越小,结晶质量越好;对蓝宝石衬底进行前处理可以大大改善GaN薄膜的晶体质量和光学质量,其(0002)面及(1012)面XRD半高宽(FWHM)分别降低到208.80"及320.76"  相似文献   

2.
采用化学方法腐蚀部分 c-面蓝宝石衬底,在腐蚀区域形成一定的图案,利用 LP-MOCVD 在此经过表面处理的蓝宝石衬底上外延生长 GaN 薄膜.采用高分辨率双晶X射线衍射(DCXRD)、光致发光光谱(PL)、透射光谱分析GaN薄膜的晶体质量和光学质量.分析结果表明,CaN 薄膜透射谱反映出的 CaN 质量与 X射线双晶衍射测量的结果一致,即透射率越大,半高宽越小,结晶质量越好;对蓝宝石衬底进行前处理可以大大改善GaN薄膜的晶体质量和光学质量,其(0002)面及(1012)面XRD半高宽(FWHM)分别降低到 208.80arcsec 及 320.76arcsec,而且其光致发光谱中的黄光带几乎可以忽略.  相似文献   

3.
使用分子束外延(MBE)技术在(0001)面蓝宝石衬底上生长混合极性的氮化镓(GaN)薄膜,利用不同极性面的GaN薄膜在强碱溶液中腐蚀特性的差异,混和极性样品经腐蚀处理后,得到了一层具有多孔结构的GaN层.以多孔结构的GaN作为缓冲层,用卤化物气相外延(HVPE)方法生长GaN厚膜.X射线双晶衍射和光致发光等测试结果表明,多孔结构的GaN缓冲层可以有效地释放GaN厚膜和衬底之间因热膨胀系数失配产生的应力,使GaN厚膜晶体的质量得到很大提高.  相似文献   

4.
使用分子束外延(MBE)技术在(0001)面蓝宝石衬底上生长混合极性的氮化镓(GaN)薄膜,利用不同极性面的GaN薄膜在强碱溶液中腐蚀特性的差异,混和极性样品经腐蚀处理后,得到了一层具有多孔结构的GaN层.以多孔结构的GaN作为缓冲层,用卤化物气相外延(HVPE)方法生长GaN厚膜.X射线双晶衍射和光致发光等测试结果表明,多孔结构的GaN缓冲层可以有效地释放GaN厚膜和衬底之间因热膨胀系数失配产生的应力,使GaN厚膜晶体的质量得到很大提高.  相似文献   

5.
在相同的腐蚀温度下,通过控制对蓝宝石衬底的化学腐蚀时间,以研究其对GaN光学性质的影响.测试结果表明:对蓝宝石衬底腐蚀50 min后,外延生长的GaN薄膜晶体质量及光学质量最优,x射线摇摆曲线中.其(0002)面及(10-12)面的半峰全宽分别降低至202.68 arcsec,300.24 arcsec.透射光谱中,其透射率最高,调制深度最大;光致发光谱的近带边发射峰强度最强,其半高全宽也降低到6.7 nm,几乎看不到任何黄光带.  相似文献   

6.
使用气相沉积SiO2和普通光刻以及湿法腐蚀方法,在C面蓝宝石上开出不同尺寸的正方形窗口,在窗口区域中露出衬底,然后使用氢化物气相外延(HVPE)方法选区外延GaN薄膜.采用光学显微镜、原子力显微镜(AFM)、扫描电子显微镜(SEM)、高分辨率双晶X射线衍射(DCXRD)和喇曼谱测试(Raman shift)对薄膜进行分析.结果表明,在C面蓝宝石衬底上独立的正方形窗口区域中外延生长的,厚度约20μm的GaN薄膜,当窗口面积为100μm×100μm时,GaN表面无裂纹;而当窗口面积为300μm×300μm和500μm×500μm时,GaN表面有裂纹.随着窗口面积的减小,GaN双晶衍射摇摆曲线的(0002)峰的半高宽(FWHM)减小,表明晶体的质量更好,最小的半高宽为530".从正方形窗口区的角上到边缘再到中心,GaN的面内压应力逐渐减小,分析认为这与OaN横向外延区(ELO区)与SiO2掩膜之间的相互作用,以及窗口区到ELO区的线位错的90"扭转有关.  相似文献   

7.
使用气相沉积SiO2和普通光刻以及湿法腐蚀方法,在C面蓝宝石上开出不同尺寸的正方形窗口,在窗口区域中露出衬底,然后使用氢化物气相外延(HVPE)方法选区外延GaN薄膜.采用光学显微镜、原子力显微镜(AFM)、扫描电子显微镜(SEM)、高分辨率双晶X射线衍射(DCXRD)和喇曼谱测试(Raman shift)对薄膜进行分析.结果表明,在C面蓝宝石衬底上独立的正方形窗口区域中外延生长的,厚度约20μm的GaN薄膜,当窗口面积为100μm×100μm时,GaN表面无裂纹;而当窗口面积为300μm×300μm和500μm×500μm时,GaN表面有裂纹.随着窗口面积的减小,GaN双晶衍射摇摆曲线的(0002)峰的半高宽(FWHM)减小,表明晶体的质量更好,最小的半高宽为530".从正方形窗口区的角上到边缘再到中心,GaN的面内压应力逐渐减小,分析认为这与OaN横向外延区(ELO区)与SiO2掩膜之间的相互作用,以及窗口区到ELO区的线位错的90"扭转有关.  相似文献   

8.
采用MOCVD技术在r面蓝宝石衬底上采用两步AlN缓冲层法外延制备了a面GaN薄膜.利用高分辨X射线衍射技术和Raman散射技术分析了样品的质量以及外延膜中的残余应力.实验结果表明:样品的(1120)面的X射线双晶摇摆曲线的半峰宽仅为0.193°,Raman光谱中E2高频模的半峰宽仅为3.9cm-1,这些说明a面GaN薄膜具有较好的晶体质量;X射线研究结果表明样品与衬底的位相关系为:[11(2)0]GaN ||[1(1)02]sapphire,[0001]Gan||[(11)01]sapphire和[(11)00]GaN[11(2)0]sapphire;高分辨X射线和Raman散射谱的残余应力研究表明,采用两步AlN缓冲层法制备的a面GaN薄膜在平面内的残余应力大小与用低温GaN缓冲层法制备的a面GaN薄膜不同,我们认为这是由引入AlN带来的晶格失配和热失配的变化引起的.  相似文献   

9.
采用MOCVD技术在r面蓝宝石衬底上采用两步AlN缓冲层法外延制备了a面GaN薄膜.利用高分辨X射线衍射技术和Raman散射技术分析了样品的质量以及外延膜中的残余应力.实验结果表明:样品的(1120)面的X射线双晶摇摆曲线的半峰宽仅为0.193°,Raman光谱中E2高频模的半峰宽仅为3.9cm-1,这些说明a面GaN薄膜具有较好的晶体质量;X射线研究结果表明样品与衬底的位相关系为:[11(2)0]GaN ||[1(1)02]sapphire,[0001]Gan||[(11)01]sapphire和[(11)00]GaN[11(2)0]sapphire;高分辨X射线和Raman散射谱的残余应力研究表明,采用两步AlN缓冲层法制备的a面GaN薄膜在平面内的残余应力大小与用低温GaN缓冲层法制备的a面GaN薄膜不同,我们认为这是由引入AlN带来的晶格失配和热失配的变化引起的.  相似文献   

10.
采用非掺GaN为缓冲层,利用金属有机物气相沉积(MOCVD)方法在蓝宝石衬底上获得了晶体质量较好的InN单晶薄膜.用光学显微镜观察得到的InN薄膜,表面无铟滴生成.INN(0002)X射线双晶衍射摇摆曲线的半峰宽为9.18;原子力显微镜测得的表面平均粗糙度为18.618nm;Hall测量得到的InN薄膜的室温背景电子浓度为1.08×1019cm-3,相应的迁移率为696cm2/(V·s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号