首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在惯性约束聚变(ICF)中,微球表面覆盖塑料涂层和塑料掺杂涂层具有极大的使用价值。本文介绍了制备此类涂层的两种最有前景的微球涂敷技术,即低压等离子体聚(LPP)结合分子束悬浮(MBL),激光诱导化学气相沉积(LCVD)结合粘滞性气体射流悬浮(VGJFL);并简术了涂层的分析方法。  相似文献   

2.
目的将负载缓蚀剂植酸钠的多孔壳聚糖微球添加到水性聚丙烯酸涂层中,研究涂层改性后的防腐蚀性能。方法利用油包水(W/O)乳化固化法制备壳聚糖微球,通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)研究微球的形貌性征。利用负压-浸渍法将缓蚀剂植酸钠负载到壳聚糖微球中,并利用热重分析(TGA)研究缓蚀剂的负载率。将负载缓蚀剂的微球按照质量分数5%添加到水性涂层中,利用电化学阻抗谱(EIS)研究涂层改性后的防腐蚀性能。结果 SEM图像表明,壳聚糖微球成球性良好,粒径为20~30μm。FT-IR及XRD结果表明,交联剂香草醛通过希夫碱反应以及氢键作用对壳聚糖进行交联,使得壳聚糖微球固化,并且结晶度降低。TGA结果表明,缓蚀剂植酸钠的负载率为25.79%。EIS结果表明,经负载缓蚀剂的壳聚糖微球改性后的水性聚丙烯酸涂层电荷转移电阻增加。结论水性聚丙烯酸涂层中的多孔壳聚糖控制植酸钠的释放,提高了缓蚀剂的利用率,改性后的涂层防腐蚀性能得到了提高。  相似文献   

3.
金属涂层作为惯性约束聚变空心微球的保护层,对提高靶丸的性能具有重要的作用。利用磁控溅射技术和旋转与敲击相结合的驱动方式,在辉光放电聚合物微球表面溅射铝涂层,探究改变敲击间隔时长对微球涂层的影响。利用X射线照相机、白光干涉仪、扫描电镜和X射线衍射仪对微球铝涂层进行表征分析。结果表明:空心微球表面的铝涂层厚度为(2±0.1)μm,表面粗糙度控制在75 nm以下,涂层表面光滑、无裂缝,呈柱状晶生长,(111)晶面为择优取向晶面,试验重复性好。同时发现:敲击能有效改善微球涂层生长过程中的阴影效应,增加涂层的壁厚均匀性并影响微球涂层的表面粗糙度。当敲击间隔为15 s时,微球铝涂层的综合质量最佳,壁厚均匀性达93.5%,表面粗糙度为30.43 nm,优晶面的晶粒尺寸为13.66 nm。  相似文献   

4.
通过乳液聚合法制备表面具有聚乙二醇(PEG)支链的聚苯乙烯微球,将所得微球悬浮液与丙烯酸酯聚合物乳液共混,采用涂覆的方式制备仿生减阻涂层。考察微球的组成及其粒度、不同微球含量对涂层表面形貌及润湿性的影响,研究交联对涂层稳定性的影响。采用异硫氰酸荧光素标记的牛血清蛋白(BSA-FITC)考察不同微球含量对涂层抗蛋白吸附性的影响,运用扭矩测定法考察了涂层的减阻性能。结果表明:具有PEG支链的聚苯乙烯微球粒径具有单分散性,所得仿生涂层表面分布着大量的聚合物微球,且随着微球质量分数增大,涂层水接触角减小、亲水性增强;交联反应显著改善涂层的耐水稳定性;与未添加微球的涂层相比,当微球质量分数为15%时,涂层的抗蛋白吸附效率最大可达到97%,当微球质量分数为6%时,涂层的减阻率最大可达到21%。  相似文献   

5.
采用水热法合成了氧化锌(ZHM)中空微米球,通过浸渍法得到负载罗丹明B酰肼(RHBH)的氧化锌微球(ZHM-RHBH),采用红外光谱(FT-IR)对其结构进行表征。将ZHM-RHBH掺杂到环氧树脂中,在Q235碳钢基体上制备功能涂层,利用动电位极化曲线和电化学阻抗谱(EIS)考察了ZHM-RHBH对涂层缺陷处金属腐蚀的作用。结果表明,掺杂于涂层中的ZHM-RHBH不仅能够通过荧光响应指示涂层缺陷还可以抑制涂层缺陷处的腐蚀。  相似文献   

6.
目的将海胆状纳米二氧化硅(KCC-1)微球掺入聚偏氟乙烯(PVDF)中,制备出KCC-1/PVDF超疏水涂层,并在此基础上利用不同涂层修饰剂修饰,进一步制备出超滑涂层。方法以溴化十六烷基吡啶作为模板,结合煅烧法合成了海胆状KCC-1微球,分散到PVDF溶液中,在镁合金表面制备KCC-1/PVDF涂层,并进一步用不同修饰剂(全氟辛基三乙氧基硅烷(PFOTES)、十六烷基三甲氧基硅烷(HDTES)和二甲基硅油)对涂层表面进行改性。结果经过十六烷基三甲氧基硅烷改性,得到水接触角为155°的超疏水涂层,而灌注二甲基硅油后得到滑动角为4.5°的超滑表面。摩擦磨损实验中,超滑表面的耐磨性优于超疏水表面,优于空白镁合金;防覆冰实验结果表明超疏水和超滑表面能有效延缓液滴在表面结冰。结论KCC-1/PVDF超疏水与超滑涂层能有效地保护镁合金基底,且超滑涂层的防腐蚀性优于超疏水涂层,其腐蚀抑制效率IE分别为100%和98.28%。  相似文献   

7.
用NaOH和生物活性玻璃依次对空心玻璃微球进行预处理.将处理过的空心玻璃微球浸泡在1.5 SBF溶液中,仿生沉积得到羟基磷灰石涂层.利用X射线衍射仪、扫描电镜以及热场发射扫描电镜对空心玻璃微球和涂层进行表征.结果表明,浸泡15天后在空心玻璃微球表面形成一层均匀致密的羟基磷灰石涂层,随时间延长涂层厚度增加.  相似文献   

8.
董培林 《表面技术》2016,45(3):158-163,177
目的研究由负载缓蚀剂多孔Si O2微球和7537聚氨酯(PU)所制备的自修复涂层的耐蚀性能和防腐机理。方法利用负压-浸渍法将苯并三氮唑(BTA)负载到Si O2微球中,利用X射线衍射(XRD)、扫描电子显微镜(SEM)、热重分析(TGA)分别对Si O2的形貌与BTA负载含量进行分析检测,并利用划痕浸泡试验、电化学极化曲线及交流阻抗技术,研究Si O2、BTA以及负载有BTA的多孔Si O2微球(Si O2/BTA)对涂层耐蚀性能的影响。结果 SEM图像分析表明Si O2微球粒径约为1μm,热重分析试验表明BTA的负载含量为32.38%(质量分数)。划痕试验表明在浸泡过程中除了PU+Si O2/BTA coating试样外,其他试样的划痕处都出现了宏观腐蚀现象。电化学极化曲线和交流阻抗结果表明PU+Si O2/BTA coating试样始终具有最低的电流密度和较高的阻抗值。结论涂层中的多孔Si O2一方面可以储存BTA,当该涂层产生缺陷时,Si O2中的BTA被释放出来并在基体的缺陷处吸附成膜,从而使该涂层对微观缺陷具有一定的自修复功能;另一方面提高了涂层的致密性;两方面协同作用使PU+Si O2/BTA coating试样具有最好的耐蚀性能和一定的自修复功能。  相似文献   

9.
涂层技术广泛应用于金属设备腐蚀防护,而针对传统涂层服役过程中的微损伤难以及时探测并修复,导致损伤后涂层防腐性能失效、金属腐蚀进程加速等问题。开发一种中空介孔SiO2微球包覆2-巯基苯并噻唑的自修复涂层,并对涂层的自修复性能进行全面表征测试。将包覆2-巯基苯并噻唑的SiO2微球作为填料,添加到无溶剂环氧树脂涂层中制备自修复涂层,在质量分数为3.5%的NaCl溶液中探查受损涂层在铜基体表面的自修复过程。采用多种测试表征方法测试SiO2微球包覆2-巯基苯并噻唑的可行性,对涂层的自修复机理进行深入分析,综合评价自修复涂层的防腐性能。采用溶胶-凝胶法对SiO2微球进行制备,制备的SiO2微球具有中空结构,微球直径约为623nm。通过XDR、FTIR与TG等测试表征技术验证SiO2微球实现对2-巯基苯并噻唑的包覆,且负载量良好;通过EIS阻抗测试对自修复涂层的修复性能进行测试,经对照实验测试自修复涂层具有较为良好的防腐性能,并在6d时防腐性能达到最大;通过SEM、ED...  相似文献   

10.
用金属注射成形(MIM)技术制备孔隙度为60%的多孔钛,用改良冷凝聚合交联法制备明胶缓释微球并涂覆于多孔钛表面,体外细胞评价胰岛素生长因子-1(IGF-1)、转化生长因子-β1(TGF-β1)明胶缓释微球涂层多孔钛对MG63细胞功能的影响。结果表明:明胶缓释微球涂层多孔钛无细胞毒性;当IGF-1、TGF-β1明胶缓释微球的载药浓度分别在0.1~10 ng/mg和0.25~2.5 ng/mg范围内时,与MG63细胞共培养,IGF-1和TGF-β1的载药浓度与细胞的增殖和分化呈正相关;当微球的载药浓度IGF-1为10 ng/mg,TGF-β1为2.5 ng/mg时,MG63细胞具有最优的增殖和分化;IGF-1和TGF-β1联合应用对MG63细胞的黏附、增殖与分化作用明显优于单一应用。  相似文献   

11.
徐灿  邱心宇  郭云  刘惠涛  高原 《表面技术》2021,50(6):169-176
目的 研究一种将St?ber法制备的SiO2纳米微球分散在含硅溶胶体系中,在聚酰亚胺(PI,Kapton)表面制备含SiO2微纳米颗粒涂层的新方法,并利用该涂层提高Kapton薄膜的使用寿命和抗原子氧(atomic oxygen,AO)侵蚀能力.方法 用正硅酸乙酯(TEOS)在碱性条件下制备St?ber微球,用3-氨丙基三乙氧基硅烷(APTES)在酸性条件下制备含硅溶胶.将St?ber微球均匀分散到溶胶中,用提拉镀膜方法在经低浓度NaOH水热处理后的Kapton薄膜表面,制备含SiO2微纳米颗粒的涂层.在束流密度为1.43×1016 atoms/(cm2·s),辐照时间为6 h的AO环境中进行模拟试验.用SEM扫描电镜和AFM原子力显微镜表征试验前后样品的表面形貌.结果 AO辐照后,原始Kapton薄膜的质量损失和AO侵蚀率分别为1.39 mg/cm2和3.17×10?24 cm3/atom,且Kapton表面被严重侵蚀;而有涂层的Kapton样品,质量损失和AO侵蚀率分别下降为0.10 mg/cm2和0.22×10?24 cm3/atom,侵蚀率只相当于原始Kapton的6.9%.结论 采用St?ber与sol-gel相结合的方法,提高了所制备涂层中SiO2的含量.模拟试验表明,该涂层提高了样品的抗AO侵蚀能力.此制备方法简单实用,对于长寿命航天器中聚合物材料的AO防护,具有一定的研究意义.  相似文献   

12.
微磨粒磨损试验是最近发展起来的评价涂层耐磨性的方法。比较了通过微磨粒磨损试验和球(销)盘磨损试验评价硬质涂层耐磨性的差别,论述了涂层耐磨性评定结果与涂层零件使用性能之间的关系。被测试的涂层为CrN和CrSiN,工件为高速钢钻头。研究结果表明,用微磨粒磨损试验测得的微粒磨损系数(ka)与镀层钻头的钻孔寿命之间存在一定关系,也即当后。小于某一数值时,镀层钻头的钻孔寿命较高。而用球(销)盘磨损试验法测定的比磨损率则与钻头的钻孔寿命无内在联系。  相似文献   

13.
LY12铝合金微弧氧化/树脂填料复合涂层的组织与防热性能   总被引:1,自引:0,他引:1  
为提高LY12铝合金的隔热与抗火焰烧蚀性能,采用微弧氧化及涂覆复合工艺在其表面制备了底层微弧氧化/外层树脂填料复合涂层。用自制隔热装置及氧-乙炔烧蚀装置分别评价涂层的隔热与抗烧蚀性能。隔热测试表明试样暴露在450℃恒温6 min时,微弧氧化/莫来石空心微球树脂复合涂层隔热温度为245℃。微弧氧化/微球树脂复合涂层在2200℃氧-乙炔火焰下烧蚀持续25 s,质量烧蚀率为0.0425 g.s-1,线烧蚀率为0.0478 mm.s-1,复合涂层烧蚀区域背面均无变化,烧蚀条件下微弧氧化/微球树脂涂层隔热温度为1859℃,其隔热性能与450℃静态隔热测试结果一致。铝合金表面微弧氧化/树脂填料复合涂层表现出优异的隔热与抗烧蚀性能。  相似文献   

14.
周浩楠  王丹  邓卫斌 《表面技术》2016,45(3):103-108
目的采用电弧喷涂方法在环氧树脂和ABS塑料表面喷涂铝涂层,研究涂层结合强度的影响因素。方法第一组试验是塑料表面喷砂后,喷涂铝涂层;第二组是塑料表面喷砂后,涂覆一层高强度环氧树脂结构胶,再喷涂铝涂层。选择喷涂气体压力、喷涂电流和喷涂距离三因素进行正交试验,采用粘结拉伸法测试结合强度,并用照相法测量铝液和环氧树脂塑料、Q235钢的接触角。结果本试验条件下,二种塑料电弧喷涂铝涂层结合强度的影响因素主次顺序为:空气压力喷涂电流喷涂距离。最优方案是:喷涂气体压力为0.7 MPa,喷涂电流为220 A,喷涂距离为160 mm。未涂覆高强度环氧树脂结构胶的涂层,结合强度最大不超过3 MPa;涂覆高强度环氧树脂结构胶的涂层,结合强度达到近20 MPa。铝液和Q235钢的接触角是45°,和环氧树脂塑料的接触角是135°。结论环氧树脂和ABS塑料表面电弧喷涂铝涂层的结合强度低的主要原因是铝液和它们之间的润湿性差。涂覆高强度环氧树脂结构胶后,喷涂工艺参数对涂层的结合强度影响不明显,结合强度受控于环氧树脂结构胶的粘接作用,使涂层的结合强度显著提高。  相似文献   

15.
利用等离子熔覆技术以Q235低碳钢为基体制备了TiB_2-TiC强化Ni基复合材料涂层,涂层中的主要物相为TiB_2、TiC和γ-Ni,硬度达1 050 HV0.5,涂层与基体呈冶金结合状态。分别采用Al2O3陶瓷球和不锈钢球为对摩副,在30、60和120 N磨损载荷下进行往复干滑动摩擦磨损试验。结果表明:Al2O3陶瓷球为对摩副时,低载荷下(30 N)表现为微切削磨损形式;60 N载荷时,出现压实层的结构,降低了摩擦因数,磨损机理转变为粘着磨损的形式;当载荷增加到120 N时,磨损机理为氧化磨损和剥层磨损。而采用不锈钢磨球时,涂层硬度大于对摩不锈钢球硬度,磨球发生剪切破坏,部分转移到涂层表面,相对于Al2O3陶瓷磨副时具有更大的粘着效应,且随着载荷的增大转移量增加,粘着磨损加剧,所以摩擦因数呈现出随着载荷加大一直上升的趋势。  相似文献   

16.
爆炸喷涂WC-12%Co涂层的滑动磨损性能   总被引:5,自引:0,他引:5  
采用爆炸喷涂技术制备纳米和普通WC-12%Co涂层,用往复试验机对涂层的干滑动磨损性能进行了研究,分析了涂层磨损前后的形貌、结构及成分变化.结果表明:相同的喷涂条件下,WC-12%Co纳米涂层比普通涂层结构均匀、致密,但碳化物分解严重.尽管纳米涂层与普通涂层具有相近的硬度,但普通涂层的耐磨性优于纳米涂层,尤其是在重载条件下.普通涂层的磨损机制为微切削;纳米涂层在轻载(10 N)下,以塑性变形为主要磨损机制,随载荷增加至30 N,纳米WC粒子不能起到阻抗陶瓷球对磨副的磨削作用,而是随粘结相一起被去除,同时由于纳米涂层脱碳导致的层间结合薄弱,在滑动磨损中易发生成片剥落,耐磨性大幅下降.  相似文献   

17.
李宾  刘锡尧  张君安  刘波  卢志伟 《表面技术》2022,51(11):215-225
目的 为解决硬质涂层抗磨与减摩性能难以兼顾的难题,提出并制备出具有优异减摩耐磨性能的表面微坑复合MoS2镍基涂层结构,为抗磨减摩性能统一的涂层设计提供重要依据。方法 以42CrMo轴承钢为基体,采用两种加工方法(在42CrMo轴承钢表面采用激光熔覆制备镍基涂层,在涂层表面电火花加工微坑织构)制备表面微坑复合MoS2镍基涂层,通过球-盘摩擦磨损试验(GCr15对磨球)分别测试3种载荷(2、4、6 N)下42CrMo轴承钢、42CrMo轴承钢表面镍基涂层和表面微坑复合MoS2镍基复合涂层试样的摩擦学性能,并通过先进测试技术(XRD、SEM)分析复合涂层的组织结构及磨痕微观形貌。结果 在不同载荷工况下,镍基涂层的磨损率远小于42CrMo轴承钢,表面微坑复合MoS2镍基涂层的摩擦因数和磨损率均小于镍基涂层和42CrMo轴承钢,在4 N载荷工况下,镍基-MoS2复合涂层具有最低摩擦因数,达到0.36,磨损率为7.41×10?7 mm3/(N.m),比镍基涂层试样(26.621 0?7 mm3/(N.m))降低了72.09%。结论 表面微坑复合MoS2镍基涂层结构中涂层与环氧树脂粘结MoS2固体润滑剂可独立高效发挥自身耐磨、减摩特性,并在不同载荷下发挥协同作用,两种方法复合处理能得到具有良好减摩耐磨性能的表面。  相似文献   

18.
热喷涂Ni基复合涂层重熔处理的研究现状   总被引:1,自引:1,他引:0  
热喷涂Ni基复合涂层因具有耐磨、耐腐蚀及耐高温等特点,被广泛应用于机械零件的表面修复和保护。但是,热喷涂层为典型的层状结构,具有微缺陷含量较高、与基体结合强度低等特点,难以适应苛刻的工作环境,其应用和发展受限。重熔处理可以消除热喷涂层的层状结构,消除或部分消除孔隙、裂纹等微缺陷,使涂层与基体形成冶金结合,提高涂层的使用性能。本文首先介绍了几种适用Ni基复合涂层的重熔技术(即激光重熔、火焰重熔、感应重熔等),随后介绍了重熔处理对Ni基复合涂层表面完整性(即微缺陷、结合强度和硬度)的影响,接着分析了重熔处理对Ni基复合涂层两种服役性能(即耐磨性、耐腐蚀性能)的影响,最后总结了目前在关于Ni基复合涂层重熔技术研究中存在的问题,进而探讨了相应的解决方案,并指出挖掘新的表面重熔技术和对不同的材料体系进行针对性研究是未来重点发展的方向。  相似文献   

19.
目的 研制应用于超精密加工领域的高性能金刚石涂层,探究硬质合金基体表面激光微织构对硼掺杂金刚石(BDD)涂层沉积质量的影响,分析不同类型的仿生微织构对基–膜结合强度、工具切削性能的改善效果及原因。方法 在硬质合金表面使用激光脉冲制备不同类型的仿生微织构,并通过热丝化学气相沉积(HFCVD)法在刀具表面沉积BDD涂层。采用数显洛氏硬度计(HRS-150)、超景深三维显微镜、扫描电子显微镜(SEM)、能谱仪(EDS)、白光干涉表面轮廓仪、拉曼光谱(Raman)对样品进行表征。通过压痕试验及铣削试验研究涂层的附着强度和刀具的切削性能。结果 激光微织构边缘发生表面硬化。激光微织构区域沉积BDD涂层后,基体表面缺陷显著降低,织构内部金刚石晶粒更密集,沉积质量提升,三角织构(TT)边缘的金刚石颗粒堆积坡度最缓,不同类型的织构化BDD涂层的粗糙度、金刚石纯度、切削性能及附着强度均不同,涂层附着力与表面硬度呈正相关。硼掺杂三角织构(BDTTD)涂层刀具具有最佳的切削性能。结论 织构边缘和内部具有更高的金刚石二次成核率和沉积质量。织构的存在可以提升BDD涂层的附着强度和刀具性能,并且织构边缘的涂层附着力最强,这些得益于激光烧蚀及仿生微织构对硬质合金表面的硬化及对BDD涂层内在缺陷的修复。  相似文献   

20.
目的研究微缺陷对B_2-NiAl高温涂层材料在拉伸载荷作用下的变形行为和失效机理的影响。方法在考虑裂纹和孔洞等微缺陷的影响下,采用嵌入原子势函数(EAM)和分子动力学方法,模拟了完美B_2-NiAl涂层(Sample 1)、含中心对称微裂纹涂层(Sample 2)、含有中心微裂纹与单微孔洞涂层(Sample 3)和含有中心微裂纹与双微孔洞涂层(Sample 4)模型的失效过程,利用键对分析技术(CAN)、中心对称参数法(CSP)和径向分布函数(RDF),对涂层的变形过程和失效机理进行了分析表征。结果随着微缺陷的增加,高温材料的屈服应力会明显下降,弹性模量也会有所降低,屈服应变逐渐减小,但微孔洞会使涂层出现二次屈服现象。完美B_2-NiAl高温涂层在屈服后的位错和相变区域面积较小,分布比较均匀,在边界处萌发裂纹并沿(100)方向扩展,再沿着(111)方向扩展,直至失效。相比完美B_2-NiAl高温涂层,含有微裂纹和孔洞的涂层在屈服后的位错和相变区域较小,主要在裂纹尖端沿着111滑移系方向均匀分布,但其主裂纹沿着[100]方向扩展并导致断裂。结论微裂纹会降低B_2-NiAl高温涂层的强度,但微孔洞会提高其塑性。应力集中会导致微裂纹萌生并在裂纹尖端附近产生微孔洞,使其与主裂纹贯通直至失效,而位错塞积则是造成应力集中的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号