首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
LiNi1−xCoxO2 (x = 0, 0.1, 0.2) cathode materials were successfully synthesized by a rheological phase reaction method with calcination time of 0.5 h at 800 °C. All obtained powders are pure phase with α-NaFeO2 structure (R-3m space group). The samples deliver an initial discharge capacity of 182, 199 and 189 mAh g−1 (25 mA g−1, 4.35-3.0 V), respectively. The reaction mechanism was also discussed, which consists of a series of defect reactions. As a result of these defect reactions, the reaction of forming LiNi1−xCoxO2 takes place in high speed.  相似文献   

3.
The phases that appear in the intermediate reaction steps for the formation of lithium nickel oxide were deduced from XRD and DTA analyses. XRD analysis and electrochemical measurements were performed for LiNi1−yFeyO2 (0.000 ≤ y ≤ 0.300) samples calcined in air after preheating in air at 400 °C for 30 min. Rietveld refinement of the LiNi1−yFeyO2 XRD patterns (0.000 < y ≤ 0.100) was carried out from a [Li,Ni]3b[Li,Ni,Fe]3a[O2]6c starting structure model. The samples of LiNi1−yFeyO2 with y = 0.025 and 0.050 had higher first discharge capacities when compared with LiNiO2 and exhibited better or similar cycling performance at a 0.1 C rate in the voltage range of 2.7–4.2 V. The LiNi0.975Fe0.025O2 sample had the highest first discharge capacity of 176.5 mAh/g and a discharge capacity of 121.0 mAh/g at n = 100. With the exception of Co-substituted LiNiO2, such a high first discharge capacity has not been previously reported.  相似文献   

4.
LiNi1−y Co y O2 samples were synthesized at 800 °C and 850 °C, by the solid-state reaction method, using the starting materials LiOH·H2O, Li2CO3, NiO, NiCO3, Co3O4 and CoCO3. The LiNi1−y Co y O2 synthesized using Li2CO3, NiO and Co3O4 exhibited the α-NaFeO2 structure of the rhombohedral system (space group ). As the Co content increased, the lattice parameters a and c decreased. The reason is that the radius of the Co ion is smaller than that of the Ni ion. The increase in c/a shows that a two-dimensional structure develops better as the Co content increases. The LiNi0.7Co0.3O2 synthesized at 800 °C using LiOH · H2O, NiO and Co3O4 exhibited a larger first discharge capacity of 162 mAh g−1 than the other samples. The cycling performances of the samples with the first discharge capacity larger than 150 mAh g−1 were investigated. LiNi0.9Co0.1O2 synthesized at 850 °C using Li2CO3, NiO and Co3O4 showed excellent cycling performance. Samples with larger first discharge capacity will have a greater tendency for lattice destruction due to expansion and contraction during intercalation and deintercalation, than samples with smaller first discharge capacity. As the first discharge capacity increases, the capacity fading rate thus increases.  相似文献   

5.
The layered LiNi0.7Co0.3O2 cathode material was synthesized by the combustion method using sucrose as fuel at 800 °C for 1 h, which leads to homogeneous size distribution with sub-micron particle size. The characterization of this material was realized using X-ray diffraction, scanning electron microscopy and completed by magnetic measurements. The Rietveld refinement shows the presence of 2.6% extra nickel in the interslab space. The presence of nickel ions in the lithium layers was confirmed by magnetization measurements. The 90° Ni-O-Ni ferromagnetic coupling is the main magnetic interactions. Lithium extraction from this phase occurs without major structural modifications. Cycling tests have shown a very good cycling stability at various current rates. Furthermore, this material delivers high reversible capacity of about 150 mAh/g in the 2.8-4.4 V range at the C/20.  相似文献   

6.
LiNi1?yCoyO2 (y=0.1, 0.3 and 0.5) cathode materials were synthesized by a solid-state reaction method at different temperatures using Li2CO3 as a Li source, NiCO3 as a Ni source, and Co3O4 as a Co source. The electrochemical properties of the synthesized samples were then investigated. Structures of the synthesized LiNi1?yCoyO2 (y=0.1, 0.3 and 0.5) samples were analyzed, and microstructures of the samples were observed. Voltage vs. x in LixNi1?yCoyO2 curves for the first and second charge–discharge cycles and intercalated and deintercalated Li quantity Δx were studied. LiNi0.9Co0.1O2 synthesized at 800 °C had the largest first discharge capacity (152 mAh/g) and quite good cycling performance, with a discharge capacity of 146 mAh/g at n=5. It had a discharge capacity fading rate of 1.4 mAh/g/cycle.  相似文献   

7.
Layered LiNi0.6Co0.2Mn0.2O2 materials were synthesized at different sintering temperatures using spray-drying precursor with molar ratio of Li/Me = 1.04 (Me = transition metals). The influences of sintering temperature on crystal structure, morphology and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 materials have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and charge-discharge test. As a result, material synthesized at 850 °C has excellent electrochemical performance, delivering an initial discharge capacity of 173.1 mAh g− 1 between 2.8 and 4.3 V at a current density of 16 mA g− 1 and exhibiting good cycling performance.  相似文献   

8.
Cathode active materials with a composition of LiNi0.9Co0.1O2 were synthesized by a solid-state reaction method at 850 °C using Li2CO3, NiO or NiCO3, and CoCO3 or Co3O4, as the sources of Li, Ni, and Co, respectively. Electrochemical properties, structure, and microstructure of the synthesized LiNi0.9Co0.1O2 samples were analyzed. The curves of voltage vs. x in LixNi0.9Co0.1O2 for the first charge–discharge and the intercalated and deintercalated Li quantity Δx were studied. The destruction of unstable 3b sites and phase transitions were discussed from the first and second charge–discharge curves of voltage vs. x in LixNi0.9Co0.1O2. The LiNi0.9Co0.1O2 sample synthesized from Li2CO3, NiO, and Co3O4 had the largest first discharge capacity (151 mA h/g), with a discharge capacity deterioration rate of −0.8 mA h/g/cycle (that is, a discharge capacity increasing 0.8 mA h/g per cycle).  相似文献   

9.
The optimum conditions for synthesizing LiNi1-y Co y O2 (y=0.1, 0.3 and 0.5) by a simplified combustion method, in which the preheating step is omitted, and the electrochemical properties of these materials were investigated. The optimum condition for synthesizing LiNi0.9Co0.1O2 by the simplified combustion method is calcination at 800 °C for 12 h in air in 3.6 mole ratio of urea to nitrate. The LiNi0.9Co0.1O2 synthesized under these conditions shows the smallest R-factor{(I 006+I 102)/I 101} and the largest I 003/I 104, indicating better hexagonal ordering and less cation mixing, respectively. The LiNi0.7Co0.3O2 synthesized at 800 °C for 12 h in air in 3.6 mole ratio of urea to nitrate has the largest first discharge capacity 156.2 mA h g−1 at 0.5C and shows relatively good cycling performance. This sample shows better hexagonal ordering and less cation mixing than the other samples. The particle size of the LiNi0.7Co0.3O2 is relatively small and its particles are spherical with uniform particle size.  相似文献   

10.
11.
LiNi1?yCoyO2 (y = 0.1, 0.3 and 0.5) were synthesized by solid state reaction method at 800 °C and 850 °C from Li2CO3, NiO and CoCO3 as starting materials. The electrochemical properties of the synthesized LiNi1?yCoyO2 were investigated. As the content of Co decreases, particle size decreases rapidly and particle size gets more homogeneous. When the particle size is compared at the same composition, the particles synthesized at 850 °C are larger than those synthesized at 800 °C. Among LiNi1?yCoyO2 (y = 0.1, 0.3 and 0.5) synthesized at 850 °C, LiNi0.7Co0.3O2 has the largest intercalated and deintercalated Li quantity Δx at the first charge–discharge cycle, followed in order by LiNi0.9Co0.1O2 and LiNi0.5Co0.5O2. LiNi0.7Co0.3O2 synthesized at 850 °C has the largest first discharge capacity (142 mAh/g), followed in order by LiNi0.9Co0.1O2 synthesized at 850 °C (113 mAh/g), and LiNi0.5Co0.5O2 synthesized at 800 °C (109 mAh/g).  相似文献   

12.
LiNiO2 and LiNi1−yMyO2 (M = Zn and Ti, y = 0.005, 0.01, 0.025, 0.05, and 0.1) were synthesized with a solid-state reaction method by calcination at 750 °C for 30 h under oxygen stream after preheating at 450 °C for 5 h in air. LiNi0.995Zn0.005O2 among the Zn-substituted samples and LiNi0.995Ti0.005O2 among the Ti-substituted samples showed the best electrochemical properties. For similar values of y, LiNi1−yTiyO2 had in general better electrochemical properties than LiNi1−yZnyO2. Electrochemical properties seem to be closely related to R-factor but less related to I0 0 3/I1 0 4 value. In the FT-IR absorption spectra of LiNiO2 and LiNi1−yMyO2 (M = Zn and Ti, y = 0.005, 0.01, 0.025, 0.05 and 0.1), Li2CO3 was detected even if it is not observed from XRD pattern, with the samples LiNi1−yZnyO2 (y = 0.05 and 0.1) showing Li2ZnO2 additionally. The smaller cation mixing of the Ti-substituted samples is considered to lead to their better electrochemical properties than the Zn-substituted samples.  相似文献   

13.
J. Jiang 《Electrochimica acta》2005,50(24):4778-4783
Samples of the layered cathode materials, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (x = 1/12, 1/4, 5/12, and 1/2), were synthesized at 900 °C. Electrodes of these samples were charged in Li-ion coin cells to remove lithium. The charged electrode materials were rinsed to remove the electrolyte salt and then added, along with EC/DEC solvent or 1 M LiPF6 EC/DEC, to stainless steel accelerating rate calorimetry (ARC) sample holders that were then welded closed. The reactivity of the samples with electrolyte was probed at two states of charge. First, for samples charged to near 4.45 V and second, for samples charged to 4.8 V, corresponding to removal of all mobile lithium from the samples and also concomitant release of oxygen in a plateau near 4.5 V. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples with x = 1/4, 5/12 and 1/2 charged to 4.45 V do not react appreciably till 190 °C in EC/DEC. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples charged to 4.8 V versus Li, across the oxygen release plateau, start to significantly react with EC/DEC at about 130 °C. However, their high reactivity is similar to that of Li0.5CoO2 (4.2 V) with 1 μm particle size. Therefore, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples showing specific capacity of up to 225 mAh/g may be acceptable for replacing LiCoO2 (145 mAh/g to 4.2 V) from a safety point of view, if their particle size is increased.  相似文献   

14.
15.
The superconducting properties of Zn-doped Cu0.5Tl0.5Ba2Ca2(Cu3−yZny)O10−δ {CuTlZn-1223} (y=0, 0.83, 1.66, 2.5) samples prepared at 820, 830, 850 and 860 °C have been compared. The samples were investigated by x-ray diffraction (XRD), dc-resistivity, ac-susceptibility and Fourier Transform Infrared (FTIR) absorption measurements. Almost all the superconducting properties have been increased to their maximum in all CuTlZn-1223 samples synthesized at 860 °C, which shows that 860 °C is the optimum temperature to achieve CuTlZn-1223 with enhanced superconducting properties.  相似文献   

16.
LiNiO2, LiNi0.995Al0.005O2, LiNi0.975Ga0.025O2, LiNi0.990Ti0.010O2 and LiNi0.990Al0.005Ti0.005O2 specimens were synthesized by preheating at 400 °C for 30 min in air and calcination at 750 °C for 36 h in an O2 stream. The variation of the discharge capacities with C-rate for the synthesized samples was investigated. LiNi0.990Al0.005Ti0.005O2 has the largest first discharge capacities at the 0.1 and 0.2 C rates. LiNi0.990Ti0.010O2 has the largest first discharge capacity at the 0.5 C rate. In case of LiNiO2 and LiNi0.990Ti0.010O2, the first discharge capacity decreases slowly as the C-rate increases. LiNiO2 has the largest discharge capacities at n = 10 (after stabilization of the cycling performance) at the 0.1, 0.2 and 0.5 C rates. This is considered to be related with the largest value of I0 0 3/I1 0 4 and the smallest value of R-factor (the least degree of cation mixing) among all the samples. LiNi0.975Ga0.025O2 exhibits the lowest discharge capacity degradation rates at 0.1, 0.2 and 0.5 C rates.  相似文献   

17.
Amorphous Ru1−yCryO2/TiO2 nanotube composites were synthesized by loading different amount of Ru1−yCryO2 on TiO2 nanotubes via a reduction reaction of K2Cr2O7 with RuCl3·nH2O at pH 8, followed by drying in air at 150 °C. Cyclic voltammetry and galvanostatic charge/discharge tests were applied to investigate the performance of the Ru1−yCryO2/TiO2 nanotube composite electrodes. For comparison, the performance of amorphous Ru1−yCryO2 was also studied. The results demonstrated that the three dimensional nanotube network of TiO2 offered a solid support structure for active materials Ru1−yCryO2, allowed the active material to be readily available for electrochemical reactions, and increased the utilization of active materials. A maximum specific capacitance 1272.5 F/g was obtained with the proper amount of Ru1−yCryO2 loaded on the TiO2 nanotubes.  相似文献   

18.
A new solution combustion synthesis of layered LiNi0.5Mn0.5O2 involving the reactions of LiNO3, Mn(NO3)2, NiNO3, and glycine as starting materials is reported. TG/DTA studies were performed on the gel-precursor and suggest the formation of the layered LiNi0.5Mn0.5O2 at low temperatures. The synthesized material was annealed at various temperatures, viz., 250, 400, 600, and 850 °C, characterized by means of X-ray diffraction (XRD) and reveals the formation of single phase crystalline LiNi0.5Mn0.5O2 at 850 °C. The morphology of the synthesized material has been investigated by means of scanning electron microscopy (SEM) and suggests the formation of sub-micron particles. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) studies on the synthesized LiNi0.5Mn0.5O2 powders indicate that the oxidation states of nickel and manganese are +2 and +4, respectively. Electrochemical galvanostatic charge-discharge cycling behavior of Li//LiNi0.5Mn0.5O2 cell using 1 M LiPF6 in EC/DMC as electrolyte exhibited stable capacities of ∼125 mAh/g in the voltage ranges 2.8-4.3 V and 3.0-4.6 V and is comparable to literature reports using high temperature synthesis route. The capacity remains stable even after 20 cycles. The layered LiNi0.5Mn0.5O2 powders synthesized by this novel route have several advantages as compared to its conventional synthesis techniques.  相似文献   

19.
A high-performance LiNi0.8Co0.2O2 cathode was successfully fabricated by a sol-gel coating of CeO2 to the surface of the LiNi0.8Co0.2O2 powder and subsequent heat treatment at 700 °C for 5 h. The surface-modified and pristine LiNi0.8Co0.2O2 powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), slow rate cyclic voltammogram (CV), and differential scanning calorimetry (DSC). Unlike pristine LiNi0.8Co0.2O2, the CeO2-coated LiNi0.8Co0.2O2 cathode exhibits no decrease in its original specific capacity of 182 mAh/g (versus lithium metal) and excellent capacity retention (95% of its initial capacity) between 4.5 and 2.8 V after 55 cycles. The results indicate that the surface treatment should be an effective way to improve the comprehensive properties of the cathode materials for lithium ion batteries.  相似文献   

20.
Layered Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) have been prepared by the mixed hydroxide and molten-salt synthesis method. The individual particles of synthesized materials have a sub-microsize range of 200-500 nm, and LiNi0.475Mn0.475Zr0.05O2 has a rougher surface than that of LiNi0.5Mn0.5O2. The Li/Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) electrodes were cycled between 4.5 and 2.0 V at a current density of 15 mA/g, the discharge capacity of both cells increased during the first ten cycles. The discharge capacity of the Li/LiNi0.475Mn0.475Zr0.05O2 cell increased from 150 to 220 mAh/g, which is 50 mAh/g larger than that of the Li/LiNi0.5Mn0.5O2 cell. We found that the oxidation of oxygen and the Mn3+ ion concerned this phenomenon from the cyclic voltammetry (CV). Thermal stability of the charged Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) cathode was improved by Zr doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号