首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(23):33259-33268
The demand for high-performance grinding wheels is gradually increasing due to rapid industrial development. Vitrified bond diamond composite is a versatile material for grinding wheels used in the backside grinding step of Si wafer production. However, the properties of the vitrified bond diamond composite are controlled by the characteristics of the diamond particles, the vitrified bond, and pores and are very complicated. The main objective of this study was to investigate the effects of SiO2–Na2O–B2O3–Al2O3–Li2O–K2O–CaO–MgO–ZrO2–TiO2–Bi2O3 glass powder on the sintering, microstructure, and mechanical properties of the vitrified bond diamond composite. The elemental distributions of the composite were analyzed using electron probe micro-analysis (EPMA) to clarify the diffusion behaviors of various elements during sintering.The results showed that the relative density and transverse rupture strength of the composite sintered at 620 °C were 91.7% and 126 MPa, respectively. After sintering at 680 °C, the glass powder used in this study exhibited a superior forming ability without an additional pore foaming agent. The relative density and transverse rupture strength of the composite decreased to 48.2% and 49 MPa, respectively. Moreover, the low sintering temperature of this glass powder protected the diamond particles from graphitization during sintering, as determined by X-ray diffraction and Raman spectrum. Furthermore, the EPMA results indicate that Na diffused and segregated at the interface between the diamond particles and vitrified bond, contributing to the improved bonding. The diamond particles can remain effectively bonded by the vitrified bond even after fracture.  相似文献   

2.
《Ceramics International》2022,48(11):15565-15575
The vitrified bond CBN grinding wheels are characterized by high efficiency, high precision, and low environmental pollution. In recent years, the vitrified bond CBN grinding wheel has been widely used in manufacturing industries such as aerospace, automotive, and machine tools. In this study, a novel vitrified bond formulation containing nano SiO2 and nano CeO2 is selected to prepare the grinding wheel. The grinding experiments on 45# steel and YG20 alloy indicate that the grinding performance of the nano vitrified bond grinding wheel is significantly better than that of the conventional vitrified bond grinding wheel. The introduction of nano SiO2 and nano CeO2 greatly improves the machining performance of the vitrified bond CBN grinding wheel.  相似文献   

3.
《Ceramics International》2020,46(13):21202-21210
Differences in structure and properties of Na2O–Al2O3–B2O3–SiO2 vitrified bonds and vitrified diamond composites prepared by sol-gel and melting methods were methodically discussed. Results showed that the vitrified bond prepared by sol-gel method contained more [AlO4] tetrahedron and owned higher bending strength, with the maximum value reaching 137 MPa, 31.73% higher than that prepared by melting method (104 MPa). As the sintered temperature rose, coefficient of thermal expansion of the vitrified bond prepared by sol-gel method increased first and then decreased, acquiring a maximum value of 5.75 × 10−6 °C −1 at 720 °C, which was still much lower than the minimum value of vitrified bond prepared by melting method (7.02 × 10−6 °C −1). The vitrified diamond composite prepared by sol-gel method possessed lower sintering shrinkage than that prepared by melting method, and could be applicable to the production of grinding tools with high dimensional accuracy. What's more, the maximum bending strength of vitrified diamond composites obtained by sol-gel method was 106 MPa, 24.7% higher than that of vitrified diamond composites prepared by melting method (85 MPa).  相似文献   

4.
《Ceramics International》2021,47(24):34050-34058
Porous vitrified bond grinding wheels with complex structure, high porosity, controllable pore size have fundamental application in high efficiency and precision grinding of hard and brittle materials. In this paper, direct ink writing (DIW) is proposed to fabricate three kinds of grinding wheels, including solid structure, triangle structure, and lattice structure. Moreover, the rheological property of ceramic ink with different doses of xanthan gum (XG) solution was investigated to ensure printability, demonstrating 3% XG solution can meet requirements. Additionally, the effect of sintering temperature and pore former (PMMA) contents on size shrinkage rate, morphology, mechanical strength, and porosity et al. were studied. The results indicate that the diamond grinding wheel with 30 vol% PMMA and sintered at 670 °C possess the best comprehensive performance. Besides, grinding performance was evaluated by surface morphology, surface roughness, and material removal rate. Among the DIW-fabricated wheels, triangle structure grinding wheel and lattice structure grinding wheel possess a higher material removal rate than solid structure grinding wheel. Therefore, the porous structure grinding wheels fabricated by DIW present the advantage of controllable porosity, excellent self-sharpening ability, and higher bond strength, which may pave the way for designing a new generation vitrified bond diamond grinding wheel.  相似文献   

5.
《Ceramics International》2015,41(8):9916-9922
The effects of Y2O3 addition on the structure and properties of Li2O–ZnO–Al2O3–SiO2 (LZAS) vitrified bonds were firstly investigated for CBN grinding tools application. Glasses and glass-ceramics were characterized using differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy and infrared spectroscopy. The thermal expansion coefficient (TEC), microhardness, bending strength and chemical durability of the obtained products were also evaluated. Results showed that Y2O3 acted as the network former in the track of SiO4 tetrahedrals. Introducing Y2O3 in the glasses increased the glass transition temperature and crystallization temperature. The crystallization of the main β-quartzss phase increased with increase of Y2O3 content. The morphology of the crystals was dependent on the Y2O3 content. The TEC (5.15×10−6/°C) of vitrified bond containing 1.0 mol% Y2O3 (Y1.0) was very close to the TEC (5.0×10−6/°C) of CBN grains. Moreover, Y1.0 vitrified bond exhibits a high microhardness (5.98 GPa), a high bending strength (202 MPa) and a good chemical durability (20 days, DR=2.8×10−9 g/cm2 min), suggesting that it would be a promising material for CBN grinding tool.  相似文献   

6.
《Ceramics International》2023,49(3):4631-4640
The grinding of polycrystalline cubic boron nitride (PcBN) is hard owing to its high hardness and superior wear-resistance capacity. Machining of PcBN tools via vitrified diamond grinding wheels with a size above 10 μm may lead to brittle fracture instead of a ductile machining because of the poor toughness of cubic boron nitride. A uniformly dispersed M0.5/1.5 diamond grinding wheel with a composite vitrified bonding was fabricated to improve the surface roughness of PcBN inserts. It is demonstrated that the preparation of composite vitrified bonding with various additions of vitrified bonding produced by the melting-quenching technique (VB-MQ) has little effect on the performance of vitrified bonding, such as bending strength, CTE and phase and achieves the uniform dispersion of M0.5/1.5 diamond as the addition of VB-MQ is no greater than 50%. Both the grinding ratios and the surface roughness of PcBN inserts are enhanced.  相似文献   

7.
Grinding wheels with different abrasive grains and different bonding materials were fabricated using hot isostatic press (HIP) sintering. Poly-crystal diamond powder of #1000 mesh size, single-crystal diamond powder of #1000 mesh size, and synthetic single-crystal diamond abrasive grains of #325 mesh size were used as abrasive grains. Cast-iron, and two different particle sizes of iron powders were used for the bonding material. The grinding capacity of these grinding wheels as well as conventional grinding wheels was evaluated by constant-pressure-grinding method to grind Al2O3-TiC component ceramics, which are typical electronic ceramics used for magnetic memory devices. The hardness of the bonding materials, the adhesion strength between abrasive diamond grains and the bonding materials, and the porosity of sintered body strongly relate to the grinding capacity. The porous bonded grinding wheels showed higher grinding capacity than the conventional wheels. The HIP method enables to fabricate excellent porous metal-bonded grinding wheels.  相似文献   

8.
《Ceramics International》2023,49(6):9173-9184
The effects of Al2O3 content on the sintering behaviour, microstructure, and physical properties of Al2O3/vitrified bonds (SiO2–Al2O3–B2O3–BaO–Na2O–Li2O–ZnO–MgO) and Al2O3/vitrified bond cubic boron nitride (CBN) composites were systematically investigated using X-ray diffraction, differential scanning calorimetry, dilatometry, scanning electron microscopy, and X-ray photoelectron spectroscopy. Various amounts of Al2O3 promoted the formation of BaAl2Si2O8 and γ-LiAlSi2O6, increasing the relative crystallinity of the Al2O3/vitrified composite from 85.0 to 93.2%, resulting in residual compressive stress on BaAl2Si2O8, thereby influencing the thermal behaviour and mechanical properties of the Al2O3/vitrified composite. The bulk density, porosity, flexural strength, hardness, and thermal conductivity of 57.5 wt% Al2O3 sintered at 950 °C were 3.12 g/cm3, 6.1%, 169 MPa, 90.5 HRC, and 4.17 W/(m·K), respectively. The coefficient of thermal expansion of the bonding material was 3.83 × 10?6 °C?1, which was comparable to that of CBN, and the number of N–Al bonds were increased, which boosted the flexural strength of the Al2O3/vitrified CBN composite to 81 MPa. The excellent mechanical properties, compact structure, and suitable interfacial bonding state with the CBN grains of the Al2O3/vitrified composite make it a promising high-performance bonding material for superhard abrasive tools.  相似文献   

9.
This work presents the results of a study focused on the development of forsterite–nepheline glass-ceramic with the use of rice husk ash (RHA) as a silica source. The glass-ceramics were produced by a sintering process of a glassy frit formulated in the MgO–Al2O3–SiO2 base system with the addition of B2O3 and Na2O to facilitate the melting and pouring processes. The crystallisation study was carried out by depicting the TTT curve (Time–Temperature–Transformation). The mineralogical characterisation of the glass-ceramic materials was carried out using the X-ray diffraction (XRD). The crystallisation activation energies were calculated by the Kissinger method. The results obtained show that devitrification of the RHA glass leads to a glass-ceramic material composed of nepheline (Na2O·Al2O3·2SiO2) and forsterite (2MgO·SiO2). A study of the microstructure by scanning electron microscopy (SEM) allowed to establish the morphological evolution in both the shape and spatial arrangement of the nepheline and forsterite crystals on heating.  相似文献   

10.
The exponent of oxygen ion activity pO = for melts in the Na2O–B2O3–SiO2 system along the composition joins with constant sodium oxide contents of 25, 30, and 35 mol % is studied by an electromotive force (emf) technique at 950°C. Measurements are performed using two variants of the technique of determining pO, namely, in high-temperature salt solutions of oxide systems in KF and with a salt bridge between two oxide melts. It is shown that the basicity of melts increases with an increase in the Na2O content at a constant concentration ratio of glass-forming oxides. The acid–base properties of sodium borosilicate melts are simulated under the assumption of acid–base interaction between the components. It is found that the basicity of the studied melts along the composition joins with constant sodium oxide contents of 30 and 35 mol % is governed primarily by the acid–base interaction in Na2O–B2O3 and Na2O–SiO2 binary systems and, to a lesser extent as compared to low-alkali composition joins (below 20 mol % Na2O), by the formation of Na2O · B2O3 · 2SiO2 and Na2O · B2O3 · 6SiO2 ternary compounds.  相似文献   

11.
The influence of TiO2 amount on the microstructure and relevant properties of SiO2-Al2O3-B2O3-Na2O-Li2O-BaO vitrified bond and vitrified bond CBN composites were systematically studied via SEM, EDS, FTIR, and XPS. Results indicated that adding TiO2 could regulate the quantity of β-quartz solid solution and rutile crystals in the vitrified bond and considerably affect the thermal properties and mechanical strength of this bond. Under sintering temperature, the dense B2O3 oxide layer on the CBN surface diffused into vitrified bond and reacted with Ti4+ enriched at the interface to form a strong chemical Ti-B bond. This reaction extensively improved the interfacial wettability between the CBN and the vitrified bond. When the TiO2 amount was 6wt.%, the interfacial wettability significantly improved, and the wetting angle decreased from 68° to 43°. The flexure strength and hardness of the composites were 116.18 MPa and 128 HRB, which were 48.49% and 34.74% higher than those of the basic-formula composites, respectively.  相似文献   

12.
《Ceramics International》2019,45(10):12773-12779
In a properly made porous abrasive composite, the vitrified bond should ideally cover the grains and form a continuous network of bridges, and thus part of the heat energy from the grinding process is also transferred to the vitrified bond. Until recently, most studies on the design of composite properties have focused mainly on improving their mechanical strength and wear resistance, but increasingly the very important aspect of their thermal properties is noticed. The vitrified Al2O3 composites were made from Al2O3 grains, vitrified bond of Na2OK2OAl2OB2O3SiO2 and AlN nanopowder. The increase in porosity in the tested composites is the effect of the AlN decomposition reaction. Crystalline phases were identified in both composites - α-Al2O3 and NaAl11O17, but with a different percentage share in individual composites. In composites doped with AlN nanopowder, the proportion of NaAl11O17 crystalline phase decreases, due to its high susceptibility to reduction by Al, obtained from the AlN decomposition reaction. The product of the redox reaction is also Na+ ions, which may participate in the formation of the glass phase and thus increasing the fraction of the residual glass phase. As a result of the partial reduction of NaAl11O17 phase, an increase in α-Al2O3 content is observed. A higher proportion of α-Al2O3 phase with high thermal conductivity can be a factor that increases the rate of heat removal from the work zone.  相似文献   

13.
A novel route for the production of highly porous vitrified grinding wheels was developed via selective extraction of pore inducers with dense CO2. The extraction was performed with liquid and supercritical CO2 (scCO2) at temperatures ranging from 295 to 338 K, pressures from 8.8 to 27.6 MPa and flow rates of 3.4×10−5 and 7.5×10−5 kg s−1 CO2. The extraction rate was a strong function of temperature, flow rate, and flow direction, while unaffected by particle size of the pore inducer and pressure. The extraction had no detrimental effect on the green wheel’s microstructure. Grinding tests were performed on the CO2 extracted pore induced wheels and results were compared to those from a conventionally manufactured pore induced grinding wheel. The extracted grinding wheels performed similarly to the conventional wheels. At high metal removal rates, the extracted wheels with large pore sizes outperformed the wheels with smaller particle sizes as well as the conventional wheel. This may be due to the larger pore sizes increasing lubrication at the surface and increasing the wheel strength.  相似文献   

14.
张於亮  汪振华  姜志嵩  张铁 《硅酸盐通报》2022,41(10):3675-3679
为了提高陶瓷结合剂金刚石砂轮的性能,采用微波烧结技术,通过一系列试验,分析了陶瓷结合剂金刚石砂轮的微波烧结温度、陶瓷结合剂含量和金刚石磨料粒度对其性能的影响。结果表明:微波烧结温度是影响陶瓷结合剂金刚石砂轮性能的最主要因素,远超其余二者;陶瓷结合剂金刚石砂轮试样的洛氏硬度和抗弯强度在740 ℃时达到极大值且气孔率较小,此时洛氏硬度为66 HRB,抗弯强度为76.5 MPa,气孔率为17.8%;由微观组织观察可知陶瓷结合剂金刚石砂轮在740 ℃时可以实现陶瓷结合剂对金刚石磨料的均匀包裹,并且气孔较少。  相似文献   

15.
Three composition joins in the Na2O–B2O3–SiO2system at constant Na2O contents of 5, 10, and 15 mol % are studied by the high-temperature method of determining oxygen ion exponents pO for oxide melts. It is found that the basicity of melts increases in going from the binary sodium borate system to the sodium silicate system. The acid–base properties of ternary melts are simulated under the assumption that their basicity is determined by the interaction in pseudobinary systems. It is shown that the basicity of the studied melts is governed, to a large extent, by the formation of the Na2O · B2O3· 2SiO2ternary compound.  相似文献   

16.
The present work presents new bactericidal coatings, based on two families of non-toxic, antimicrobial glasses belonging to B2O3–SiO2–Na2O–ZnO and SiO2–Na2O–Al2O3–CaO–B2O3 systems. Free of cracking, single layer direct coatings on different biomedical metallic substrates (titanium alloy, Nb, Ta, and stainless steel) have been developed. Thermal expansion mismatch was adjusted by changing glass composition of the glass type, as well as the firing atmosphere (air or Ar) according to the biomedical metallic substrates. Formation of bubbles in some of the glassy coatings has been rationalized considering the reactions that take place at the different metal/coating interfaces. All the obtained coatings were proven to be strongly antibacterial versus Escherichia coli (>4 log).  相似文献   

17.
18.
《Ceramics International》2022,48(7):9468-9476
In this paper, the aging relationship between holding time and the interfacial solid solution was utilized to prepare high-performance agglomerated white fused alumina (AWA) abrasives. The influence of holding time on the interfacial solid solution and mechanical properties of AWA abrasives were systematically investigated, and the grinding performance was thoroughly analyzed. The results showed that increasing the holding time caused the Al2O3 to violently infiltrate the interface between the white fused alumina (WA) particles and the vitrified bond, which led to the precipitation of a large amount of β-spodumene and monoclinic celsian in the vitrified bond and transformed the simple mechanical bonds between the WA particles and the vitrified bond into stronger chemical bonds. Thus, it was possible to control the mechanical properties of the AWA abrasives by adjusting the holding time. Specifically, after sintering at 760 °C for 4h, the single particle compressive strength and impact toughness reached the maximum values of 26 N and 63%, respectively. In comparison with the WA grinding wheel, the grinding ratio of the AWA grinding wheel was increased by 17.9% and the workpiece surface roughness was reduced by 21.1%.  相似文献   

19.
Vitrified bond CBN grinding wheels are being widely used due to their superior performance. Also, advantages of vitrified grinding wheels are high elastic modulus, stable chemical property, and low thermal expansion coefficient. Brittleness and low strength are key factors restricting the development of vitrified bond CBN grinding wheels. In this paper, the sintering in a high magnetic field was innovatively introduced into the manufacturing of vitrified bond CBN grinding wheels, and the effects of sintering in a high magnetic field on properties on vitrified bond and vitrified CBN composites were systematically investigated. Vitrified bond was characterized using three-point bending, scanning electron microscopy, X-ray diffraction. It was observed that microstructure of vitrified bond could be changed, grain orientation could be controlled and average grain size could be decreased in a high magnetic field, while vitrified bond strength could be simultaneously improved. High quality vitrified bond could be obtained by appropriately adjusting the strength and direction of high magnetic field. Results demonstrated that vitrified bond properties were improved when the magnetic field strength was 6?T. In order to highlight the high magnetic field effect on the vitrified CBN composites, the ordinary CBN abrasives and nickel plated CBN abrasives were used respectively. Microstructures, bending strengths of vitrified CBN composites were compared in different high magnetic fields. When the magnetic field strength was appropriate (less than 6?T), the binding characteristic of vitrified bond CBN composites with nickel plated CBN abrasives was greatly improved. The highest bending strength value of vitrified CBN composites was 79.5?MPa in 6?T high magnetic field.  相似文献   

20.
This paper reports on the experimental evaluation of a novel melt-quenched glass belonging to the CaO–MgO–SiO2–P2O5–Na2O–CaF2 system as potential material for biomedical applications in bone regeneration. The glass composition has been designed in the primary crystallisation field of pseudo-wollastonite in CaO–MgO–SiO2 ternary phase diagram. The rise of pH upon immersion in SBF solution was slower for the novel glass in comparison to 45S5 Bioglass®. Nevertheless, both glasses exhibited similar behaviour in early formation of crystalline apatite demonstrating their osteoinductive features. The in vivo investigations in rabbits demonstrated good compatibility between the glass and surrounding tissue along the whole implantation period with negligible adverse reactions. The clinical evaluation of glass has been conducted in accordance with the ethical guidelines and regulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号