首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a facile one-step electrochemical approach to generate MnO2/rGO nanocomposite from a mixture of Mn3O4 and graphene oxide (GO). The electrochemical conversion of Mn3O4 into MnO2 through potential cycling is expedited in the presence of GO while the GO is reduced into reduced graphene oxide (rGO). The MnO2 nanoparticles are evenly distributed on the rGO nanosheets and act as the spacer to prevent rGO nanosheets from restacking. This unique structure provides high electroactive surface area (1173?m2 g?1) that improves ions diffusion within the MnO2/rGO structure. As a result, the MnO2/rGO nanocomposite exhibits high specific capacitance of 473?F?g?1 at 0.25?A?g?1, which is remarkably higher (3 times) than the Mn3O4/GO prior conversion. In addition, the electrosynthesized nanocomposite shows higher conductivity and excellent potential cycling stability of 95% at 2000 cycles.  相似文献   

2.
The Co0.33Ni0.33Mn0.33Fe2O4/graphene nanocomposite for electromagnetic wave absorption was successfully synthesized from metal chlorides solutions and graphite powder by a simple and rapid microwave-assisted polyol method via anchoring the Co0.33Ni0.33Mn0.33Fe2O4 nanoparticles on the layered graphene sheets. The Fe3+, Co2+, Ni2+ and Mn2+ ions in the solutions were attracted by graphene oxide obtained from graphite and converted to the precursors Fe(OH)3, Co(OH)2, Ni(OH)2, and Mn(OH)2 under slightly alkaline conditions. After the transformations of the precursors to Co-Ni-Mn ferrites and conversion of graphene oxide to graphene under microwave irradiation at 170?°C in just 25?min, the Co0.33Ni0.33Mn0.33Fe2O4/graphene nanocomposite was prepared. The composition and structure of the nanocomposite were characterized by X-ray diffraction (XRD), inductive coupled plasma emission spectroscopy (ICP), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (RS), transmission electron microscopy (TEM), etc. It was found that with the filling ratio of only 20?wt% and the thickness of 2.3?mm, the nanocomposite showed an ultra-wide effective absorption bandwidth (less than ?10?dB) of 8.48?GHz (from 9.52 to 18.00?GHz) with the minimum reflection loss of ??24.29?dB. Compared to pure graphene sheets, Co0.33Ni0.33Mn0.33Fe2O4 nanoparticles and the counterparts reported in literature, the nanocomposite exhibited much better electromagnetic wave absorption, mainly attributed to strong wave attenuation, as a result of synergistic effects of dielectric loss, conductive loss and magnetic loss, and to good impedance matching. In view of its thin thickness, light weight and outstanding electromagnetic wave absorption property, the nanocomposite could be used as a very promising electromagnetic wave absorber.  相似文献   

3.
We describe a novel approach for coupling pristine graphene with superparamagnetic iron oxide nanoparticles to create dispersed, magnetically responsive hybrids. The magnetic iron oxide (Fe3O4) nanoparticles are synthesized by a co-precipitation method using ferric (Fe3+) and ferrous (Fe2+) salts and then grafted with polyvinylpyrrolidone (PVP). These PVP-grafted Fe3O4 nanoparticles are then used to stabilize colloidal graphene in water. The PVP branches non-covalently attach to the surface of the pristine graphene sheets without functionalization or defect creation. These Fe3O4–graphene hybrids are stable against aggregation and are highly responsive to external magnetic fields. These hybrids can be freeze-dried to a powder or magnetically separated from solution and still easily redisperse while retaining magnetic functionality. At all stages of synthesis, the Fe3O4–graphene hybrids display no coercivity after being brought to magnetic saturation, confirming superparamagnetic properties. Microscopy and light scattering data confirm the presence of pristine graphene sheets decorated with Fe3O4 nanoparticles. These materials show promise for multifunctional polymer composites as well as biomedical applications and environmental remediation.  相似文献   

4.
A magnetic nanocomposite of citric‐acid‐functionalized graphene oxide was prepared by an easy method. First, citric acid (CA) was covalently attached to acyl‐chloride‐functionalized graphene oxide (GO). Then, Fe3O4 magnetic nanoparticles (MNPs) were chemically deposited onto the resulting adsorbent. CA, as a good stabilizer for MNPs, was covalently attached to the GO; thus MNPs were adsorbed much more strongly to this framework and subsequent leaching decreased and less agglomeration occurred. The attachment of CA onto GO and the formation of the hybrid were confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction spectrometry and transmission electron microscopy. The specific saturation magnetization of the magnetic CA‐grafted GO (GO‐CA‐Fe3O4) was 57.8 emu g?1 and the average size of the nanoparticles was found to be 25 nm by transmission electron microscopy. The magnetic nanocomposite was employed as an adsorbent of methylene blue from contaminated water. The adsorption tests demonstrated that it took only 30 min to attain equilibrium. The adsorption capacity in the concentration range studied was 112 mg g?1. The GO‐CA‐Fe3O4 nanocomposite was easily manipulated in an external magnetic field which eases the separation and leads to the removal of dyes. Thus the prepared nanocomposite has great potential in removing organic dyes. © 2014 Society of Chemical Industry  相似文献   

5.
Fe3O4-graphene nanocomposite was prepared by a gas/liquid interface reaction. The structure and morphology of the Fe3O4-graphene nanocomposite were characterized by X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy. The electrochemical performances were evaluated in coin-type cells. Electrochemical tests show that the Fe3O4-22.7 wt.% graphene nanocomposite exhibits much higher capacity retention with a large reversible specific capacity of 1048 mAh g−1 (99% of the initial reversible specific capacity) at the 90th cycle in comparison with that of the bare Fe3O4 nanoparticles (only 226 mAh g−1 at the 34th cycle). The enhanced cycling performance can be attributed to the facts that the graphene sheets distributed between the Fe3O4 nanoparticles can prevent the aggregation of the Fe3O4 nanoparticles, and the Fe3O4-graphene nanocomposite can provide buffering spaces against the volume changes of Fe3O4 nanoparticles during electrochemical cycling.  相似文献   

6.
《Ceramics International》2022,48(13):18316-18323
Heterocyclic compounds such as spirooxindole, with five rings containing nitrogen, have an important role in the realm of medicine. This study aims to synthesize the spirooxindole derivative compounds using Fe3O4/graphene oxide (GO) nanocomposite as the catalyst. The GO sample was synthesized by Hummers' method, followed by the insertion of Fe3O4 into the graphene oxide layers by the co-precipitation method. Both XRD and FTIR analyses reveal that GO and Fe3O4/GO samples have been successfully formed. SEM-EDX micrograph supported by TEM image indicates that the Fe3O4 nanoparticles in the composite have excellent dispersibility, attributable to the existence of the GO sheets. The evaluation of the ability of Fe3O4/GO as a catalyst in the synthesis of spirooxindole derivatives was carried out by the one-pot three-component method. The reaction yield shows that Fe3O4/GO was a suitable and reusable catalyst in this reaction.  相似文献   

7.
In this research, novel ternary Ag/αFe2O3-rGO nanocomposites with various contents of GO were synthesized via a facile one-pot hydrothermal method. Ag/αFe2O3-rGO nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectrometer (EDX), photoluminescence (PL) spectroscopy, and Fourier transform infrared (FTIR). The results showed that hematite nanoparticles and Ag nanoparticles were well decorated on the graphene surface. Photocatalytic activity of Ag/αFe2O3-rGO ternary nanocomposites and pure Ag/αFe2O3 was investigated for photodegradation of Congo red dye solution as a model pollutant under UV light irradiation. The ternary nanocomposite with 1.8?mg/ml GO aqueous solution concentration shows higher degradation efficiency under UV light irradiation than the pure Ag/αFe2O3 and the nanocomposites with other GO aqueous solution concentrations. It was observed that the adsorption of the dyes on the nanocomposites surface is dependent on the graphene content due to a decrease in the recombination rate, particles size, and increase charge carrier transfer. The results show that the Ag/αFe2O3-rGO nanocomposite can be used as an excellent photocatalytic material for degradation of Congo red dye in wastewater. A possible photocatalytic mechanism was proposed for degradation of Congo red dye.  相似文献   

8.
In this paper, we have presented experimental results for preparation of Fe3O4–graphene nanocomposite that uses an ultrasound assisted method. The graphene oxide (GO) was prepared from graphite powder using modified Hummers–Offeman method. Subsequently, the synthesis of graphene-Fe3O4 nanocomposite was carried out by ultrasound assisted co-precipitation of iron (II) and (III) chlorides in the presence of GO. The formation of GO and graphene-Fe3O4 nanocomposite was confirmed by X-ray diffraction (XRD), Energy dispersive X-ray (EDX) analysis and Fourier transform-infrared (FTIR) analysis. The particle size of Fe3O4 nanoparticles loaded on graphene nanosheets (observed from TEM image) was found to be smaller than 20 nm. The use of ultrasonic irradiations during synthesis of graphene-Fe3O4 nanocomposite resulted in uniform loading of Fe3O4 nanoparticles on graphene nanosheets. The prepared graphene-Fe3O4 nanocomposite material was used for the preparation of anode for lithium ion batteries. The electrochemical performance of the material was tested by cyclic voltammetry (CV) and charge/discharge cycles. It was observed that the capacity of Li-battery when the anode material was made using graphene-Fe3O4 nanocomposite showed stable electrochemical performance for around 120 cycles and the battery could repeat stable charge–discharge reaction.  相似文献   

9.
《Ceramics International》2022,48(21):31923-31930
We report a novel in-situ symbiosis method to prepare reduced graphene oxide wrapped Mn3O4 nanoparticles (rGO/Mn3O4) with uniform size about 50 nm as anodes for lithium-ion batteries (LIBs), which can simplify the preparation process and effectively reduce pollution. The rGO/Mn3O4 nanocomposite exhibited a reversible specific capacity of 795.5 mAh g?1 at 100 mA g?1 after 200 cycles (capacity retention: 87.4%), which benefits from the unique structural advantages and the synergistic effect of rGO and Mn3O4. The Mn3O4 nanoparticles encapsulated among the rGO nanosheets exhibited good electrochemical activity, and the multilayer wrinkled rGO sheets provided a stable 3D conduction channel for Li+/e? transport. The rGO/Mn3O4 nanocomposite is a promising anode candidate for advanced LIBs with excellent cycling performance and rate performance. Furthermore, this new preparation method can be extended to green and economical synthesis of advanced graphene/manganese-based nanocomposites.  相似文献   

10.
《Ceramics International》2017,43(16):13146-13153
Ideal electromagnetic absorbing materials with lightweight and high efficiency have broad application outlook in military and civil fields. In this work, a 3D nanostructure material by hybridizing Fe3O4 nanocrystals and reduced graphene oxide (Fe3O4/rGO) were synthesized through an environmental-friendly one-pot solvothermal method. The effect of GO loading on electromagnetic (EM) wave absorption characteristic of Fe3O4/rGO was investigated. The introduction of rGO sheets not only prevented Fe3O4 from agglomerating, also improved the absorption performance of Fe3O4/rGO hybrids. With an appropriate addition, Fe3O4/rGO obtained a minimum reflection loss (RL) of −22.7 dB and the absorption bandwidth was 3.13 GHz (90% absorption).  相似文献   

11.
The three-dimensional porous Fe3O4/graphene composite foam as a new kind of absorbing composite with electrical loss and magnetic loss was successfully synthesized by a facile method. Fe3O4 was evenly attached on structure of graphene sheets which overlapped with each other to form three-dimensional porous graphene foam. The results revealed that when the mass ratio of graphene oxide (GO) and Fe3O4 was 1:1, the Fe3O4/graphene composite foam possessed the best absorption properties: the minimum reflection loss was up to ??45.08?dB when the thickness was 2.5?mm and the bandwidth below ??10?dB was 6.7?GHz when the content of the composite foam absorbents was just 8%. The micron-sized three-dimensional porous structure provided more propagation paths, enhancing the energy conversion of incident electromagnetic waves. The addition of Fe3O4 contributed to improving the impedance matching performance and magnetic loss. The three-dimensional porous Fe3O4/graphene composite foam was a kind of high-efficiency wave absorber, providing a new idea for the development of microwave absorbing materials.  相似文献   

12.
Magnetite (Fe3O4) nanoparticles were prepared by solvothermal method and its composites with reduced graphene oxide namely FG1, FG2, and FG3 (changing magnetite precursor loading 0.1, 0.5, and 1 respectively) were used as adsorbents for the removal of methyl violet (MV) dye. The structural and morphological results confirm that rGO sheets were decorated with Fe3O4 and it ensures the variation of active sites toward dye removal property. The maximum adsorption capacity obtained for FG2 was 196 mg/g. The adsorption isotherms and kinetics better fit Langmuir and pseudo-second-order kinetic model for FG1 and FG2. Increasing of Fe3O4 loading on rGO reduces the dye adsorption sites and too low Fe3O4 loading affects the magnetic separation. The optimal loading of Fe3O4 on rGO is important parameter for the adsorption process and fast separation of adsorbent.  相似文献   

13.
《Ceramics International》2022,48(10):13684-13694
Iron oxide (Fe2O3) nanoparticles and reduced graphene oxide (rGO) sheets were supersonically sprayed onto a nickel substrate to fabricate flexible supercapacitors. The supersonic impact velocity was adjusted by varying the air chamber pressure from 2 to 6 bar, which facilitated the self-healing of Stone-Wall defects in rGO sheets. Supersonic spraying caused exfoliation of the rGO sheets, which in turn increased the surface area and adherence of the Fe2O3 nanoparticles. The optimal case exhibited a specific capacitance of 1.44 F?cm-2 at a current rate of 1.5 mA?cm-2 and the energy density was 14.23 mWh?cm-3 at 250 mW?cm-3. The width of the potential window increased to 1.4 V, implying a significant increase in the energy storage capability. The energy density of the supersonically sprayed Fe2O3/rGO electrode also showed no signs of deterioration even when the increased current density interfered with the electrode performance.  相似文献   

14.
Fuan He  Dong Ma  Chiwah Leung 《Carbon》2010,48(11):3139-3144
Hybrids of graphene oxide (GO) nanosheets and surface-modified Fe3O4 nanoparticles (NPs) were fabricated by a two-step process. First, Fe3O4 was modified by tetraethyl orthosilicate and (3-aminopropyl) triethoxysilane to introduce amino groups on its surface. Second, the amino groups of Fe3O4 were reacted with the carboxylic groups of GO with the aid of 1-ethyl-3-(3-dimethyaminopropyl)carbodiimide and N-hydroxysuccinnimide to form a GO-Fe3O4 hybrid. The attachment of Fe3O4 NPs on the GO nanosheet surface was confirmed by transmission electron microscopy and Fourier-transform infrared spectroscopy. The adsorption capacity of GO-Fe3O4 for methylene blue and neutral red cationic dyes was as high as 190.14 and 140.79 mg/g, respectively. The GO-Fe3O4 hybrids could be reduced to form graphene-Fe3O4 hybrids by using NaBH4 as reducing agent and be used to prepare magnetic GO films.  相似文献   

15.
A magnetically separable ZnFe2O4-reduced graphene oxide (rGO) nano-composite was synthesised via a microwave method. Field emission scanning electron microscopy images of the nano-composite showed a uniform dispersion of nanoparticles on the rGO sheets. The performance of the nano-composite in wastewater treatment was assessed by observing the decomposition of methylene blue. The nano-composite showed excellent bifunctionality, i.e. adsorption and photocatalytic degradation of methylene blue, for up to five cycles of water treatment when illuminated with light from a halogen bulb. In contrast, water treatment with the nano-composite without illumination and the illuminated rGO, with no decoration of nanoparticles, diminished significantly after the first treatment. The reclamation of the ZnFe2O4-rGO nano-composite from treated water could be easily achieved by applying an external magnetic field.  相似文献   

16.
A molecular dynamics (MD) simulation was used to investigate the adsorption of graphene oxide (GO) and graphene (G) onto an Fe3O4(111) surface. The MD simulation results indicated that the direction of the GO/G sheets introduced onto the Fe3O4(111) surface affected the morphologies of the GO/G sheets and the interface interaction energies. When the GO/G sheets were introduced onto the Fe3O4(111) surface from the parallel direction, a smooth, single-layered structure of the GO/G sheets formed, and the interface interaction energies were low. The interface interaction energy of GO-Fe3O4 interface was lower than that between G and Fe3O4(111) surfaces because of the strong interactions between the carboxyl groups on the GO edges and the iron atoms on the surface. The ideal distribution and lower interface interaction energies of the polymers (PEG and PEI) with GO/G indicated that the GO/G coated layer on the Fe3O4 surface could be further modified. According to results, GO, under specific stirring speeds, was adsorbed onto the Fe3O4 surface along the parallel direction and formed stable graphene-Fe3O4 composite microspheres suitable for drug carrier applications. Both GO and G covered the rough, grooved surface of Fe3O4(111), and the adsorption of GO was faster than that of G.  相似文献   

17.
V2O3 is a promising anode material and has attracted the interests of researchers because of its high theoretical capacity of 1070?mAh?g?1, low discharge potential, inexpensiveness, abundant sources, and environmental friendliness. However, the development and application of V2O3 have been hindered by the low conductivity and drastic volume change of V2O3 composites. In this work, V2O3/reduced graphene oxide (rGO) nanocomposites are successfully prepared through a facile solvothermal method and annealing process. In this synthesis protocol, V2O3 nanoparticles (NPs) are encapsulated by rGO. This unique structure enables rGO to inhibit volume changes and improve the ion and electronic conductivity of V2O3. In addition, V2O3 NPs, which exhibit sizes of 5–40?nm, are uniformly dispersed on rGO sheets without aggregation. The Li+ storage behavior of V2O3/rGO is systematically investigated in the potential range 0.01–3.0?V. The V2O3/rGO nanocomposite can achieve a high reversible specific capacity of 823.4?mAh?g?1 under the current density of 0.1?A?g?1, and 407.3 mAh g?1 under the high current density of 4.0?A?g?1. The results of this study provide insight into the fabrication of rGO-based functional materials with extensive applications.  相似文献   

18.
《Ceramics International》2021,47(20):28367-28376
An excellent photocatalyst must have narrow band gap value, broad absorption range and high electrical conductivity. The co-precipitation route was followed to synthesize copper substituted manganese ferrite nanoparticles because the co-precipitation is a facile, short and easy to handle method. The nanocomposite of copper substituted manganese ferrite with rGO was synthesized by sonication method. The graphene was used for composite synthesis because of its extraordinary properties such as chemical stability, high transparency, large surface area, high electron transfer ability. Graphene can also improve catalytic acitivity of spinal ferrites. X-ray diffraction (XRD), Raman spectroscopy, and field emission scanning electron microscopy (FESEM) were employed to confirm the structural, spectral and morphological aspects of prepared nanomaterials and their composites with rGO. XRD confirmed face centered cubic (FCC) crystal structure. The appearance of relative broad peaks estimated the formation of nanocrystalline size of synthesized samples. SEM images showed that the nanoparticles have spherical morphology. Furthermore, rGO sheets can be clearly seen in SEM images of composite material. It was investigated that electrical conductivity of MnF2O4 was increased by the substitution of metal cations such as copper. Current – voltage measurements were carried out at room temperature and confirmed the enhanced conductivities of copper doped manganese ferrite and its rGO based nanocomposite. These photocatalysts were used for the degradation of methylene blue (MB) dye and Mn0.9Cu0.1Fe2O4/rGO nanocomposite showed great activity in photocatalysis experiment with 77% degradation efficiency. This increment in photocatalysis was found to be due to synergistic effect of ferrite material and rGO sheets, which increases the electrical conductivity and decreases the photoexcited electrons-holes pair recombination of composite materials.  相似文献   

19.
《Ceramics International》2023,49(20):32458-32469
Absorbers at microwave frequencies with multiple frequency-band response are particularly important for use in military for stealth technology. Specially, ferrite based absorbing materials are significant for electromagnetic shielding and signal attenuation. The enhancement of reflection loss of ferrites along with carbonaceous materials are even more beneficial. Recently double-layer absorbers have extensively studied to meet the requirements of advanced absorbing materials in multiple frequency-band response. It still remains a challenge how to determine the type and thickness to couple the impedance-matching-layer to the absorption-layers for a double-layer absorber. We applied hydrothermal method to prepare Fe3O4 nanoparticle and combine them with either graphene oxide (GO) or reduced graphene oxide (rGO) to prepare a composite of specific quality to obtain Fe3O4@GO and Fe3O4@rGO nanocomposite. We studied microwave attenuation capabilities of single and double-layer absorbers containing these two materials. We have demonstrated that with a thin impedance matching layer as a first layer and an absorbing layer behind this layer for the double-layered absorber has much higher reflection loss (RL) than a single-layer. The Fe3O4@rGO composite as a single-layer absorber shows the best microwave absorption performance with RL close to −30 dB in all three microwave bands (X, Ku and K bands). The use of a double-layer structure as Fe3O4@GO as impedance matching layer and Fe3O4@rGO as absorbing layer exhibits the best absorption of −50 dB. This is much larger than the single-layered absorbers at all three frequency-bands. Such a performance is superior to many reported ferrite-based carbonaceous composites. Therefore, a double-layer absorber is best suited to coat the whole body of the aircraft or missiles to evade satellite detection, a preparation towards new-generation weapons for future warfare. Before performing the absorption studies we have characterized the ferrites, GO and rGO materials with various microstructural and magnetic characterizations.  相似文献   

20.
Graphene/Fe3O4 nanocomposites obtained via soft chemical methodis have been characterized for their crystallinity, morphology, microstructure,optical bandgap, vibrational modes and magnetic properties. Graphenesheets decorated with magnetite nanoparticles are employed to investigatetheir photocatalytic response against methyl orange. The study revealsthat the conducting nature of graphene, engineered bandgap and photoFenton like reaction synergistically govern the efficient photocatalyticactivity of nanocomposite. Interestingly, it is observed that methylorange can be completely removed i.e., upto 99.24% by graphene/Fe3O4 nanocomposite, whereas the removal efficiency is 43% for Fe3O4 nanoparticles, alone. The presence of graphene endows the delay in chargecarriers' recombination whereas, photo Fenton like reaction stimulatesthe generation of reactive oxygen species. This ultimately leads to thehighly enhanced photocatalytic activity and complete removal of methylorange. The magnetically separable photocatalyst, presented in thiswork, offers great prospects for fast and economical decontamination of dye polluted water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号