首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present a new sufficient condition for absolute stability of Lure system with two additive time-varying delay components. This criterion is expressed as a set of linear matrix inequalities (LMIs), which can be readily tested by using standard numerical software. We use this new criterion to stabilize a class of nonlinear time-delay systems. Some numerical examples are given to illustrate the applicability of the results using standard numerical software.  相似文献   

2.
张芬  张艳邦 《计算机应用研究》2012,29(11):4144-4147
研究了不确定Lurie时滞系统的绝对稳定问题。通过构造适当的Lyapunov泛函、引入一些自由权矩阵和充分考虑时滞导数的上限信息,得到了基于LMIs(线性矩阵不等式)形式的时滞相关绝对稳定性新准则,两个数值例子验证了所得结论的有效性和更弱保守性。  相似文献   

3.
The problem of stability for singular systems with two additive time-varying delay components is investigated. By constructing a simple type of Lyapunov-Krasovskii functional and utilizing free matrix variables in approximating certain integral quadratic terms, a delay-dependent stability criterion is established for the considered systems to be regular, impulse free, and stable in terms of linear matrix inequalities (LMIs). Based on this criterion, some new stability conditions for singular systems with a single delay in a range and regular systems with two additive time-varying delay components are proposed. These developed results have advantages over some previous ones in that they have fewer matrix variables yet less conservatism. Finally, two numerical examples are employed to illustrate the effectiveness of the obtained theoretical results.  相似文献   

4.
Stability analysis of linear systems with time-varying delay is investigated. In order to highlight the relations between the variation of the delay and the states, redundant equations are introduced to construct a new modelling of the delay system. New types of Lyapunov–Krasovskii functionals are then proposed allowing to reduce the conservatism of the stability criterion. Delay-dependent stability conditions are then formulated in terms of linear matrix inequalities. Finally, several examples show the effectiveness of the proposed methodology.  相似文献   

5.
This paper is mainly concerned with the problem for the robustly exponential stability in mean square moment of uncertain neutral stochastic neural networks with interval time-varying delay. With an appropriate augmented Lyapunov–Krasovskii functional (LKF) formulated, the convex combination method is utilised to estimate the derivative of the LKF. Some new delay-dependent exponential stability criteria for such systems are obtained in terms of linear matrix inequalities, which involve fewer matrix variables and have less conservatism. Finally, two illustrative numerical examples are given to show the effectiveness of our obtained results.  相似文献   

6.
In this paper, the global robust exponential stability is considered for a class of neural networks with parametric uncer-tainties and time-varying delay. By using Lyapunov functional method, and by resorting to the new technique for estimating the upper bound of the derivative of the Lyapunov functional, some less conservative exponential stability criteria are derived in terms of linear matrix inequalities (LMIs). Numerical examples are presented to show the effectiveness of the proposed method.  相似文献   

7.
This paper concerns the stability problem of singular systems with time-varying delay. First, the singular system with time-varying delay is transformed into the neutral system with time-varying delay. Second, a more proper Lyapunov–Krasovskii functional (LKF) is constructed by adding some integral terms to quadratic forms. Then, to obtain less conservative conditions, the free-matrix-based integral inequality is adopted to estimate the derivative of LKF. As a result, some delay-dependent stability criteria are given in terms of linear matrix inequalities. Finally, two numerical examples are provided to demonstrate the effectiveness and superiority of the proposed method.  相似文献   

8.
In this paper, the problem of stability criteria of neural networks with two additive time-varying delay components is investigated. Some new delay-dependent stability criteria are derived in terms of linear matrix inequalities by choosing a new class of Lyapunov functional. The obtained criteria are less conservative because reciprocally convex approach and convex polyhedron approach are considered. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

9.
This paper considers the problem of delay-dependent robust stability for uncertain singular systems with additive time-varying delays. The purpose of the robust stability problem is to give conditions such that the uncertain singular system is regular, impulse free, and stable for all admissible uncertainties. The results are expressed in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are provided to illustrate the effectiveness of the proposed method.  相似文献   

10.
ABSTRACT

This paper investigates the problem of delay-dependent stability analysis for systems with interval time-varying delay. By means of a new double free-matrix-based integral inequality and augmented Lyapunov–Krasovskii functionals containing as much information of time-varying delay as possible, a new stability criterion for systems is established. Firstly, by a double integral term two-step estimation approach and combined with single free-matrix-based integral inequalities, a stability criteria is presented. Then, compared with the double integral term two-step estimation approach, the proposed new double free-matrix-based integral inequality with more related time delays has potential to lead to a criterion with less conservatism. Finally, the validity of the presented method is demonstrated by two numerical examples.  相似文献   

11.
In this article, the absolute stability problem is investigated for Lur'e systems with time-varying delay and sector-bounded nonlinearity. By employing the delay fractioning idea, the new augmented Lyapunov functional is first constructed. Then, by introducing some slack matrices and by reserving the useful term when estimating the upper bound of the derivative of Lyapunov functional, the new delay-dependent absolute stability criteria are derived in terms of linear matrix inequalities. Several numerical examples are presented to show the effectiveness and the less conservativeness of the proposed method.  相似文献   

12.
This article provides new delay-dependent stability criteria for linear systems with interval time-varying delays. With a new Lyapunov–Krasovskii functional constructed, a tighter upper bound of its derivative is estimated. The resulting criterion has an advantage over some existing ones in the literature due to the fact that it involves fewer matrix variables and is less conservative, which is established theoretically. Two numerical examples are given to demonstrate the reduced conservatism of the proposed results.  相似文献   

13.
In this paper, we address the problem of finding outer bound of forward reachable sets and inter-bound of backward reachable sets of switched systems with an interval time-varying delay and bounded disturbances. By constructing a flexible Lyapunov–Krasovskii functional combining with some recent refined integral-based inequalities, some sufficient conditions are derived for the existence of (1) the smallest possible outer bound of forwards reachable sets; and (2) the largest possible inter-bound of backward reachable sets. These conditions are delay dependent and in the form of linear matrix inequalities, which therefore can be efficiently solved by using existing convex algorithms. A constructive geometric design of switching laws is also presented. Two numerical examples with simulation results are provided to demonstrate the effectiveness of our results.  相似文献   

14.
Jin-Hoon Kim 《Automatica》2011,(9):2118-2121
This note considers the stability of linear systems with a time-varying delay. We are interested in a simple Lyapunov–Krasovskii functional (LKF) approach without delay decomposition. In this category, all recent tractable results had a fixed bound on the allowable maximum size of the delay for years. We propose a new simple LKF including the cross terms of variables and quadratic terms multiplied by a higher degree scalar function, and present a new result expressed in the form of LMIs. We show, by two well-known examples, that our result overcomes the previous allowable maximum size of delay and it is less conservative than the previous results having a relatively small upper bound in the derivative of time-delay.  相似文献   

15.
研究具有时变时滞和扇区有界非线性的中立型系统的绝对稳定性问题.根据时变时滞分段分析思想,构造一个新的Lyapunov-Krasovskii泛函,得到了一些保守性更小的基于线性矩阵不等式的时滞相关绝对稳定性判据.采用凸组合方法,可以避免忽略Lyapunov-Krasovskii泛函微分中的有用项.数值算例表明了所提出方法的有效性.  相似文献   

16.
This work focuses on the absolute stability problem of Lurie control system with interval time‐varying delay and sector‐bounded nonlinearity. Firstly, we present a refined Wirtinger's integral inequality and establish an improved Wirtinger‐type double integral inequality. Secondly, a modified augmented Lyapunov‐Krasovskii functional (LKF) is constructed to analyze the stability of Lurie system, where the information on the lower and upper bounds of the delay and the delay itself are fully exploited. Based on the proposed integral inequalities and some bounding techniques, the upper bound of the derivative of the LKF can be estimated more tightly. Accordingly, the proposed absolute stability criteria, formulated in terms of linear matrix inequalities, are less conservative than those in previous literature. Finally, numerical examples demonstrate the effectiveness and advantage of the proposed method.  相似文献   

17.
The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the e?ectiveness of the proposed approach.  相似文献   

18.
This paper is devoted to the finite-time stability analysis of neutral-type neural networks with random time-varying delays. The randomly time-varying delays are characterised by Bernoulli stochastic variable. This result can be extended to analysis and design for neutral-type neural networks with random time-varying delays. On the basis of this paper, we constructed suitable Lyapunov–Krasovskii functional together and established a set of sufficient linear matrix inequalities approach to guarantee the finite-time stability of the system concerned. By employing the Jensen's inequality, free-weighting matrix method and Wirtinger's double integral inequality, the proposed conditions are derived and two numerical examples are addressed for the effectiveness of the developed techniques.  相似文献   

19.
针对一类状态向量中含有时滞和的连续系统,研究其时滞相关稳定性问题.通过构造新的Lyapunov函数,获得了保证系统稳定、基于线性矩阵不等式的时滞相关充分条件,该条件不需要对原系统进行模型变换.数值算例表明,所得到的结论较已往文献具有较小的保守性.  相似文献   

20.
This paper presents a new result of stability analysis for continuous systems with two additive time-varying delay components, which represent a general class of delay systems with strong application background in network based control systems. This criterion is expressed as a set of linear matrix inequalities, which can be readily tested by using standard numerical software. A numerical example is provided to show the effectiveness and advantage of the proposed stability condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号