首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to inherent issue of energy limitation in sensor nodes, the energy conservation is the primary concern for large‐scale wireless sensor networks. Cluster‐based routing has been found to be an effective mechanism to reduce the energy consumption of sensor nodes. In clustered wireless sensor networks, the network is divided into a set of clusters; each cluster has a coordinator, called cluster head (CH). Each node of a cluster transmits its collected information to its CH that in turn aggregates the received information and sends it to the base station directly or via other CHs. In multihop communication, the CHs closer to the base station are burdened with high relay load; as a result, their energy depletes much faster as compared with other CHs. This problem is termed as the hot spot problem. In this paper, a distributed fuzzy logic‐based unequal clustering approach and routing algorithm (DFCR) is proposed to solve this problem. Based on the cluster design, a multihop routing algorithm is also proposed, which is both energy efficient and energy balancing. The simulation results reinforce the efficiency of the proposed DFCR algorithm over the state‐of‐the‐art algorithms, ie, energy‐aware fuzzy approach to unequal clustering, energy‐aware distributed clustering, and energy‐aware routing algorithm, in terms of different performance parameters like energy efficiency and network lifetime.  相似文献   

2.
With the increasing demands for mobile wireless sensor networks in recent years, designing an energy‐efficient clustering and routing protocol has become very important. This paper provides an analytical model to evaluate the power consumption of a mobile sensor node. Based on this, a clustering algorithm is designed to optimize the energy efficiency during cluster head formation. A genetic algorithm technique is employed to find the near‐optimal threshold for residual energy below which a node has to give up its role of being the cluster head. This clustering algorithm along with a hybrid routing concept is applied as the near‐optimal energy‐efficient routing technique to increase the overall efficiency of the network. Compared to the mobile low energy adaptive clustering hierarchy protocol, the simulation studies reveal that the energy‐efficient routing technique produces a longer network lifetime and achieves better energy efficiency.  相似文献   

3.
The advances in the size, cost of deployment, and user‐friendly interface of wireless sensor devices have given rise to many wireless sensor network (WSN) applications. WSNs need to use protocols for transmitting data samples from event regions to sink through minimum cost links. Clustering is a commonly used method of data aggregation in which nodes are organized into groups to reduce energy consumption. Nonetheless, cluster head (CH) has to bear an additional load in clustering protocols to organize different activities within the cluster. Proper CH selection and load balancing using efficient routing protocol is therefore a critical aspect for WSN's long‐term operation. In this paper, a threshold‐sensitive energy‐efficient cluster‐based routing protocol based on flower pollination algorithm (FPA) is proposed to extend the network's stability period. Using FPA, multihop communication between CHs and base station is used to achieve optimal link costs for load balancing distant CHs and energy minimization. Analysis and simulation results show that the proposed algorithm significantly outperforms competitive clustering algorithms in terms of energy consumption, stability period, and system lifetime.  相似文献   

4.
在无线传感器网络中的LEACH协议是一种自适应聚类路由算法.由于LEACH协议存在着无法控制簇首在网络中的分布位置、簇首选择方式限制条件不够等缺点导致能量消耗太大.基于簇头能量限制和双簇头路由方式,对LEACH协议进行了改进,设计了一种降低能耗的双簇头非均匀分簇路由协议.双簇头非均匀分簇路由协议采用NS2进行网络仿真实验,通过仿真结果的分析以及与LEACH协议的对比,证明双簇头非均匀分簇路由协议有效提高了网络能耗的均衡性.  相似文献   

5.
Designing energy efficient communication protocols for wireless sensor networks (WSNs) to conserve the sensors' energy is one of the prime concerns. Clustering in WSNs significantly reduces the energy consumption in which the nodes are organized in clusters, each having a cluster head (CH). The CHs collect data from their cluster members and transmit it to the base station via a single or multihop communication. The main issue in such mechanism is how to associate the nodes to CHs and how to route the data of CHs so that the overall load on CHs are balanced. Since the sensor nodes operate autonomously, the methods designed for WSNs should be of distributed nature, i.e., each node should run it using its local information only. Considering these issues, we propose a distributed multiobjective‐based clustering method to assign a sensor node to appropriate CH so that the load is balanced. We also propose an energy‐efficient routing algorithm to balance the relay load among the CHs. In case any CH dies, we propose a recovery strategy for its cluster members. All our proposed methods are completely distributed in nature. Simulation results demonstrate the efficiency of the proposed algorithm in terms of energy consumption and hence prolonging the network lifetime. We compare the performance of the proposed algorithm with some existing algorithms in terms of number of alive nodes, network lifetime, energy efficiency, and energy population.  相似文献   

6.
朱明  刘漫丹 《电视技术》2016,40(10):71-76
LEACH协议是无线传感器网络中最流行的分簇路由协议之一.针对LEACH算法簇分布不均匀以及网络能耗不均衡等问题提出了一种高效节能多跳路由算法.在簇建立阶段,新算法根据网络模型计算出最优簇头间距值,调整节点通信半径以控制簇的大小,形成合理网络拓扑结构;在数据传输阶段,簇头与基站之间采用多跳的通信方式,降低了节点能耗.在TinyOS操作系统下,使用nesC语言设计实现了LEACH-EEMH算法.基于TOSSIM平台的仿真结果表明,新算法较LEACH算法在均衡网络能耗、延长网络寿命方面具有显著优势.  相似文献   

7.
Clustering provides an effective way to prolong the lifetime of wireless sensor networks.One of the major issues of a clustering protocol is selecting an optimal group of sensor nodes as the cluster heads to divide the network.Another is the mode of inter-cluster communication.In this paper,an energy-balanced unequal clustering(EBUC)protocol is proposed and evaluated.By using the particle swarm optimization(PSO)algorithm,EBUC partitions all nodes into clusters of unequal size,in which the clusters closer to the base station have smaller size.The cluster heads of these clusters can preserve some more energy for the inter-cluster relay traffic and the 'hot-spots' problem can be avoided.For inter-cluster communication,EBUC adopts an energy-aware multihop routing to reduce the energy consumption of the cluster heads.Simulation results demonstrate that the protocol can efficiently decrease the dead speed of the nodes and prolong the network lifetime.  相似文献   

8.
In wireless sensor network, a large number of sensor nodes are distributed to cover a certain area. Sensor node is little in size with restricted processing power, memory, and limited battery life. Because of restricted battery power, wireless sensor network needs to broaden the system lifetime by reducing the energy consumption. A clustering‐based protocols adapt the use of energy by giving a balance to all nodes to become a cluster head. In this paper, we concentrate on a recent hierarchical routing protocols, which are depending on LEACH protocol to enhance its performance and increase the lifetime of wireless sensor network. So our enhanced protocol called Node Ranked–LEACH is proposed. Our proposed protocol improves the total network lifetime based on node rank algorithm. Node rank algorithm depends on both path cost and number of links between nodes to select the cluster head of each cluster. This enhancement reflects the real weight of specific node to success and can be represented as a cluster head. The proposed algorithm overcomes the random process selection, which leads to unexpected fail for some cluster heads in other LEACH versions, and it gives a good performance in the network lifetime and energy consumption comparing with previous version of LEACH protocols.  相似文献   

9.
侯华  宋彬  周武旸 《电视技术》2015,39(13):73-75
无线传感器网络(WSN)具有的能量有限,其能量利用效率的高低直接影响着网络的生命周期.为了提高无线传感器网络的能量利用效率,提出了一种能量感知非均匀成簇路由优化算法(Energy Awareness Unequal Clustering Routing Optimization Algorithm,EUCR).该算法通过节点在网络中所处的位置确定各节点的邻居节点,并以局部能量选举簇头,各簇头根据其邻居节点构建非均匀分簇网络.同时该算法在路由阶段考虑了簇头的剩余能量和转发代价.仿真结果表明,EUCR算法能有效提高网络的能量利用效率,并延长网络的生命周期.  相似文献   

10.
Reducing the energy consumption of sensor nodes and prolonging the life of the network is the central topic in the research of wireless sensor network (WSN) protocol. The low-energy adaptive clustering hierarchy (LEACH) is one of the hierarchical routing protocols designed for communication in WSNs. LEACH is clustering based protocol that utilizes randomized rotation of local cluster-heads to evenly distribute the energy load among the sensors in the network. But LEACH is based on the assumption that each sensor nodes contain equal amount of energy which is not valid in real scenarios. A developed routing protocol named as DL-LEACH is proposed. The DL-LEACH protocol cluster head election considers residual energy of nodes, distance from node to the base station and neighbor nodes, which makes cluster head election reasonable and node energy consumption balance. The simulation results of proposed protocols are compared for its network life time in MATLAB with LEACH protocol. The DL-LEACH is prolong the network life cycle by 75 % than LEACH.  相似文献   

11.
An Improved Fuzzy Unequal Clustering Algorithm for Wireless Sensor Network   总被引:1,自引:0,他引:1  
This paper introduces IFUC, which is an Improved Fuzzy Unequal Clustering scheme for large scale wireless sensor networks (WSNs).It aims to balance the energy consumption and prolong the network lifetime. Our approach focuses on energy efficient clustering scheme and inter-cluster routing protocol. On the one hand, considering each node’s local information such as energy level, distance to base station and local density, we use fuzzy logic system to determine each node’s chance of becoming cluster head and estimate the cluster head competence radius. On the other hand, we use Ant Colony Optimization (ACO) method to construct the energy-aware routing between cluster heads and base station. It reduces and balances the energy consumption of cluster heads and solves the hot spots problem that occurs in multi-hop WSN routing protocol to a large extent. The validation experiment results have indicated that the proposed clustering scheme performs much better than many other methods such as LEACH, CHEF and EEUC.  相似文献   

12.
Sensor nodes are powered by battery and have severe energy constraints. The typical many‐to‐one traffic pattern causes uneven energy consumption among sensor nodes, that is, sensor nodes near the base station or a cluster head have much heavier traffic burden and run out of power much faster than other nodes. The uneven node energy dissipation dramatically reduces sensor network lifetime. In a previous work, we presented the chessboard clustering scheme to increase network lifetime by balancing node energy consumption. To achieve good performance and scalability, we propose to form a heterogeneous sensor network by deploying a few powerful high‐end sensors in addition to a large number of low‐end sensors. In this paper, we design an efficient routing protocol based on the chessboard clustering scheme, and we compute the minimum node density for satisfying a given lifetime constraint. Simulation experiments show that the chessboard clustering‐based routing protocol balances node energy consumption very well and dramatically increases network lifetime, and it performs much better than two other clustering‐based schemes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Clustering and multi-hop routing algorithms substantially prolong the lifetime of wireless sensor networks (WSNs). However, they also result in the energy hole and network partition problems. In order to balance the load between multiple cluster heads, save the energy consumption of the inter-cluster routing, in this paper, we propose an energy-efficient routing algorithm based on Unequal Clustering Theory and Connected Graph Theory for WSN. The new algorithm optimizes and innovates in two aspects: cluster head election and clusters routing. In cluster head election, we take into consideration the vote-based measure and the transmission power of sensor nodes when to sectionalize these nodes into different unequal clusters. Then we introduce the connected graph theory for inter-cluster data communication in clusters routing. Eventually, a connected graph is constituted by the based station and all cluster heads. Simulation results show that, this new algorithm balances the energy consumption among sensor nodes, relieves the influence of energy-hole problem, improve the link quality, achieves a substantial improvement on reliability and efficiency of data transmission, and significantly prolongs the network lifetime.  相似文献   

14.
This paper presents two new routing protocols for mobile sensor networks, viz. power‐controlled routing (PCR) and its enhanced version, i.e. Enhanced Power‐Controlled Routing (EPCR). In both the protocols, fixed transmission power is employed in the clustering phase but when ordinary nodes are about to send their data to their respective cluster‐heads, they change their transmission power according to their distance from their cluster‐head. While in PCR, the nodes are associated with the cluster‐head on the basis of weight, in EPCR it is done on the basis of distance. In addition to the protocols, we are suggesting a packet loss recovery mechanism for the PCR and EPCR. Both protocols work well for both mobile and static networks and are designed to achieve high network lifetime, high packet delivery ratio, and high network throughput. These protocols are extensively simulated using mass mobility model, with different speeds and different number of nodes to evaluate their performance. Simulation results show that both PCR and EPCR are successful in achieving their objectives by using variable transmission powers and smart clustering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
在无线传感器网络中,分簇型路由在路由协议中占据重要的地位,该协议方便拓扑结构管理,能源利用率高,数据融合简单。文章从簇头生成、簇形成和簇路由3个角度对典型的分簇路由算法LEACH,HEED,EEUC,PEGASIS进行了系统描述,从网络生命周期和节点存活数量等方面,对比了其优缺点,结合该领域的研究现状,指出了未来研究的方向。  相似文献   

16.
Most of the current generation sensor nodes of mobile wireless sensor network (MWSN) are designed to have heterogeneous mobility to adapt itself in the applied environment. Energy optimization in MWSN with heterogeneous mobility is very challenging task. In this paper, a heterogeneous game theoretical clustering algorithm called mobile clustering game theory–1 (MCGT‐1) is proposed for energy optimization in a heterogeneous mobile sensor environment. Energy optimization is achieved through energy‐efficient cluster head election and multipath routing in the network. A heterogeneous clustering game is modelled with varying attributes and located an asymmetric equilibrium condition for a symmetric game with mixed strategies. The real‐time parameters, namely, predicted remaining energy, distance between a base station and nodes, distance between nodes, and mobility speed, were used to calculate the probability to elect the cluster head (CH). The efficient multipath routing is achieved through prior energy prediction strategy. It has mitigated the generation of “hot spots,” reducing its delay and improving the overall residual energy of the network. Simulation results showed that the average lifetime of MCGT‐1 has increased by 6.33 %, 13.1% and 14.2% and the PDR has improved by 4.8%,11.8%, and 17.2% than MCGT, LEACH‐ME and LEACH‐M respectively. The hot spot delay is reduced to 0.063025 seconds, improving the efficiency of the network.  相似文献   

17.
~~An energy efficient clustering routing algorithm for wireless sensor networks1. Mainwaring A, Polastre J, Szewczyk R, et al. Wireless sensor networks for habitat monitoring. Proceedings of the ACM International Workshop on Wireless Sensor Networks and A…  相似文献   

18.
在交通路灯监控系统中为节省网络节点能耗和降低数据传输时延,提出一种无线传感网链状路由算法(CRASMS)。该算法根据节点和监控区域的信息将监控区域分成若干个簇区域,在每一个簇区域中依次循环选择某个节点为簇头节点,通过簇头节点和传感节点的通信建立簇内星型网络,最终簇头节点接收传感节点数据,采用数据融合算法降低数据冗余,通过簇头节点间的多跳路由将数据传输到Sink节点并将用户端的指令传输到被控节点。仿真结果表明:CRASMS算法保持了PEGASIS算法在节点能耗方面和LEACH算法在传输时延方面的优点,克服了PEGASIS 算法在传输时延方面和LEACH算法在节点能耗方面的不足,将网络平均节点能耗和平均数据传输时延保持在较低水平。在一定的条件下,CRASMS算法比LEACH和PEGASIS算法更优。  相似文献   

19.
Aiming at the problem that the location distribution of cluster head nodes filtered by wireless sensor network clustering routing protocol was unbalanced and the data transmission path of forwarding nodes was unreasonable,which would increase the energy consumption of nodes and shorten the network life cycle,a clustering routing protocol based on improved particle swarm optimization algorithm was proposed.In the process of cluster head election,a new fitness function was established by defining the energy factor and position equalization factor of the node,the better candidate cluster head node was evaluated and selected,the position update speed of the candidate cluster head nodes was adjusted by the optimized update learning factor,the local search and speeded up the convergence of the global search was expanded.According to the distance between the forwarding node and the base station,the single-hop or multi-hop transmission mode was adopted,and a multi-hop method was designed based on the minimum spanning tree to select an optimal multi-hop path for the data transmission of the forwarding node.Simulation results show that the clustering routing protocol based on improved particle swarm optimization algorithm can elect cluster head nodes and forwarding nodes with more balanced energy and location,which shortened the communication distance of the network.The energy consumption of nodes is lower and more balanced,effectively extending the network life cycle.  相似文献   

20.
针对无线传感器网络能量受限和路由协议中节点能量消耗不均衡的问题,提出一种新的无线传感器网络的分区异构分簇协议(PHC协议).该协议的核心是将3种不同能量等级的节点根据能量的不同分别部署在不同区域,能量较高的高级节点和中间节点使用聚类技术通过簇头直接传输数据到汇聚点,能量较低的普通节点则直接传输数据到汇聚点.仿真结果表明,该协议通过对节点合理的分配部署,使簇头分布均匀,更好地均衡了节点的能量消耗,延长了网络的稳定期,提高了网络的吞吐量,增强了网络的整体性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号