首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the male reproductive organs of mammals, the formation of spermatozoa takes place during two successive phases: differentiation (in the testis) and maturation (in the epididymis). The first phase, spermiogenesis, relies on a unique adherens junction, the apical ectoplasmic specialization linking the epithelial Sertoli cells to immature differentiating spermatids. Vezatin is a transmembrane protein associated with adherens junctions and the actin cytoskeleton in most epithelial cells. We report here the expression profile of vezatin during spermatogenesis. Vezatin is exclusively expressed in haploid germ cells. Immunocytochemical and ultrastructural analyses showed that vezatin intimately coincides, temporally and spatially, with acrosome formation. While vezatin is a transmembrane protein associated with adherens junctions in many epithelial cells, it is not seen at the ectoplasmic specializations, neither at the basal nor at the apical sites, in the seminiferous epithelium. In particular, vezatin does not colocalize with espin and myosin VIIa, two molecular markers of the ectoplasmic specialization. In differentiating spermatids, ultrastructural data indicate that vezatin localizes in the acrosome. In epididymal sperm, vezatin localizes also to the outer acrosomal membrane. Considering its developmental and molecular characteristics, vezatin may be involved in the assembly/stability of this spermatic membrane.  相似文献   

2.
GLUT8 is a facilitative glucose transporter expressed at high levels in the testis. In this study, we analyzed the GLUT8 expression in mouse testis during spermatogenesis by RT-PCR, Western blot and immunohistochemistry methods. Our results show that GLUT8 expression is limited to spermatids and spermatozoa in the testis. Expression begins when round spermatids are formed at postnatal day 24. The expression persists throughout spermiogenesis, and it is also detected in spermatozoa, but it is absent in more immature germ cells, Sertoli cells and interstitial tissue. GLUT8 immunoreactivity is always restricted to the acrosomic system in a manner that matches the acrosome system formation. The GLUT8 expression is mainly associated with the acrosomic membrane in the acrosome, although significant immunoreactivity is also found inside the acrosomic lumen. The specific GLUT8 location suggests that this transporter plays a pivotal role in the fuel supply of spermatozoa, and in the traffic of sugars during the capacitation and fertilization processes.  相似文献   

3.
Riboflavin carrier protein (RCP) is a phosphoglycoprotein (37 kDa) that is well studied in chicken. An immunologically cross-reacting protein was identified in mammals and active immunization of male rats and bonnet monkeys with chicken RCP lead to an approximately 80% reduction in fertility. However, the physiological mechanism responsible for inhibition of male fertility has not been investigated. Moreover, information on the cell type-specific localization and the origin of immunoreactive RCP during spermatogenesis is extremely limited. Hence, studies were carried out to determine the pattern of expression of immunoreactive RCP during spermatogenesis and its role in sperm function in the golden hamster. Immunoreactive RCP was germ cell-specific, found to be associated with the acrosome-organizing region of early spermatids and showed interesting patterns of immunolocalization during late stages of spermiogenesis. Mature spermatozoa exhibited acrosome-specific localization, mainly in the peri-acrosomal membrane. The immunoreactive protein was undetectable in (non)gonadal somatic cells tested. The protein had a molecular mass of 45-55 kDa and was biosynthesized by round spermatids. The acrosome-specific localization of immunoreactive RCP was unchanged during capacitation, but it was substantially lost during acrosome reaction. Functional studies indicated that treatment of spermatozoa with anti-RCP antibodies did not have any effect on either capacitation or acrosome reaction, but markedly reduced the rate of sperm penetration into zona-free hamster oocytes. These results show the existence of male germ cell-specific immunoreactive RCP, having a potential role in sperm-egg interaction in hamsters. Also the pattern of immunoreactive-RCP localization makes it an ideal marker to monitor development of acrosome in mammalian spermatozoa.  相似文献   

4.
5.
6.
The green frog Rana esculenta is a seasonal breeder. The cyclic changes between almost arrested and highly activated spermatogenesis offer an ideal model to study basic mechanisms of spermatogenesis. In this study, we demonstrated, to our knowledge for the first time, c-kit receptor positive cells in the testis of this amphibian. The presence of c-kit receptor protein was confirmed by western blotting (Wb) analyses carried out in the testis during all the three main phases of the sexual cycle. The antibody recognized a band of about 150 kDa that was correlated with the positive staining in the germinal epithelium. The immunolabelling for c-kit receptor, evaluated by immunohistochemistry (IHC), was localized in I and II spermatogonia (SPG), in I and II spermatocytes, in both elongating spermatids and spermatozoa and in the Leydig cells. Furthermore, c-kit expression showed a seasonal pattern connected with both testicular and plasma profiles of testosterone during the reproductive cycle. The highest expression of c-kit receptor occurred during the reproductive period, when the testis exhibited the maximum concentration of testosterone. In this period, the mitotic activity of germ cell, assessed by both Wb and IHC analyses for proliferating cell nuclear antigen (PCNA), was intensive. Indeed, during the post-reproductive period, testosterone titres were the lowest and the expression of both PCNA and c-kit receptor protein in the testis, although present, is minor when compared with the reproductive phase. This evidence suggests that cell division can continue sufficiently to accumulate SPG for the next spring, when new germinal cells undergo multiplication. Finally, during the pre-reproductive period, testosterone levels begin to increase and mitotic activity of germinal epithelium is comparably enhanced. These events seem to precede the period of maximum stimulated spermatogonial proliferation, i.e. the reproductive period. These results suggest that the c-kit receptor may play a role in germ cell proliferation and provide a basis for future detailed investigation of regulatory factors of the proliferation of SPG.  相似文献   

7.
Two-pore domain K(+) (K(2P)) channels that help set the resting membrane potential of excitable and nonexcitable cells are expressed in many kinds of cells and tissues. However, the expression of K(2P) channels has not yet been reported in bovine germ cells. In this study, we demonstrate for the first time that K(2P) channels are expressed in the reproductive organs and germ cells of Korean cattle. RT-PCR data showed that members of the K(2P) channel family, specifically KCNK3, KCNK9, KCNK2, KCNK10, and KCNK4, were expressed in the ovary, testis, oocytes, embryo, and sperm. Out of these channels, KCNK2 and KCNK4 mRNAs were abundantly expressed in the mature oocytes, eight-cell stage embryos, and blastocysts compared with immature oocytes. KCNK4 and KCNK3 were significantly increased in eight-cell stage embryos. Immunocytochemical data showed that KCNK2, KCNK10, KCNK4, KCNK3, and KCNK9 channel proteins were expressed at the membrane of oocytes and blastocysts. KCNK10 and KCNK4 were strongly expressed and distributed in oocyte membranes. These channel proteins were also localized to the acrosome sperm cap. In particular, KCNK3 and KCNK4 were strongly localized to the post-acrosomal region of the sperm head and the equatorial band within the sperm head respectively. These results suggest that K(2P) channels might contribute to the background K(+) conductance of germ cells and regulate various physiological processes, such as maturation, fertilization, and development.  相似文献   

8.
9.
10.
11.
Scaffold proteins of mitogen-activated protein kinase (MAPK) intracellular signal transduction pathways mediate the efficient and specific activation of the relevant MAPK signaling modules. Previously, our group and others have identified c-Jun NH2-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1, also known as JNK-interacting protein 3) as a scaffold protein for JNK MAPK pathways. Although JSAP1 is expressed in the testis in adults, its expression during development has not been investigated. In addition, it is unknown which types of cells in the testis express the scaffold protein. Here, we examined the expression of JSAP1 in the testis of mice aged 14 days, 20 days, 6 weeks, and 12 weeks by immunohistochemistry and Western blotting. The specificity of the anti-JSAP1 antibody was evaluated from its reactivity to exogenously expressed JSAP1 and a structurally related protein, and by antigen-absorption experiments. The immunohistochemical analyses with the specific antibody showed that the JSAP1 protein was selectively expressed in the spermatogonia and spermatocytes, but not in other cell types, including spermatids and somatic cells, during development. However, not all spermatogonia and spermatocytes were immunopositive either, especially in the 12-week-old mouse testis. Furthermore, we found by Western blotting that the expression levels of JSAP1 protein vary during development; there is high expression until 6 weeks after birth, which approximately corresponds to the end of the first wave of spermatogenesis. Collectively, these results suggest that JSAP1 function may be important in spermatogenic cells during early postnatal development.  相似文献   

12.
The objective of this study was to compare the expression of Col1a1, Col1a2, and procollagen I in the seminiferous tubules of immature and adult mice and to characterize the cellular expression pattern of procollagen I in germ cells during spermatogenesis in order to provide necessary groundwork for further functional studies in the process of spermatogenesis. Microarray analysis demonstrated that Col1a1 and Col1a2 were abundantly expressed in the seminiferous tubules of 6-day-old mice compared with 60-day-old mice, and the expression levels of Col1a1 and Col1a2 mRNA were validated using a semi-quantitative RT-PCR assay. Western blot analysis further confirmed that procollagen I was expressed at a higher level in the seminiferous tubules of 6-day-old mice compared with 60-day-old mice. Immunohistochemical analysis revealed that type A spermatogonia were positive for procollagen I in the testis of 6-day-old mice, whereas Sertoli cells were negative for this protein. The in vivo procollagen I staining in type A spermatogonia was corroborated in spermatogonia exhibiting a high potential for proliferation and the ability to form germ cell colonies in in vitro culture. Moreover, procollagen I was also detected in type A spermatogonia, intermediate spermatogonia, type B spermatogonia, and preleptotene spermatocytes in the adult mouse testes, but positive staining disappeared in more differentiated germ cell lineages detaching from the basement membrane, including leptotene spermatocytes, pachytene spermatocytes, round spermatids and elongated spermatids. These data suggest that Col1a1, Col1a2 and procollagen I are associated with type A spermatogonia and play a potential role in mediating the detachment and migration of germ cells during spermatogenesis.  相似文献   

13.
Spermatogenesis can occur in testis tissue from immature bulls ectopically grafted into mouse hosts; however, efficiency of sperm production is lower than in other donor species. To elucidate a possible mechanism for the impaired spermatogenesis in bovine testis xenografts, germ cell fate and xenograft development were investigated at different time points and compared with testis tissue from age-matched calves as controls. Histologically, an initial decrease in germ cell number was noticed in xenografts recovered up to 2 months post-grafting without an increase in germ cell apoptosis. From 2 months onward, the number of germ cells increased. In contrast, a continuous increase in germ cell number was seen in control tissue. Pachytene spermatocytes were observed in some grafts before 4 months, whereas in the control tissue they were not present until 5 months of age. Beyond 4 months post-grafting spermatogenesis appeared to be arrested at the pachytene spermatocyte stage in most grafts. Elongated spermatids were observed between 6 and 8 months post-grafting, similar to the controls, albeit in much lower numbers. Lumen formation started earlier in grafts compared with controls and by 6 months post-grafting tubules with extensively dilated lumen were observed. A donor effect on efficiency of spermatogenesis was also observed. These results indicate that the low efficiency of sperm production in bovine xenografts is due to an initial deficit of germ cells and impaired meiotic and post-meiotic differentiation. The characterization of spermatogenic efficiency will provide the basis to understand the control of spermatogenesis in testis grafts.  相似文献   

14.
Upon adhesion to the zona pellucida, sperm undergo regulated exocytosis of the acrosome. Although it is necessary for sperm to penetrate the zona pellucida and fertilize an egg, the acrosomal membrane fusion process is poorly understood. Complexins I and II are small, cytosolic proteins that bind to a complex of proteins termed the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex to regulate synaptic vesicle exocytosis. Complexin-II-deficient mice are fertile but the fertility of sperm from complexin-I-deficient male mice is unclear because the mice have ataxia and cannot mate. Here, we show that the genes encoding complexins I and II are expressed in primary spermatocytes and spermatids. Complexin proteins were found in/near the developing acrosome in spermatids and in or around the acrosome of mature sperm. Cell fractionation demonstrated that complexins I and II were predominantly found in the cytosolic fraction. Furthermore, sperm from complexin-I-deficient mice had normal morphology, number, and only small differences in motility, as assessed by computer-assisted semen analysis. Complexin-I-deficient sperm capacitated normally and bound to the zona pellucida. But when sperm from complexin-I-deficient mice were inseminated into females, a defect in fertility was observed, in concordance with previous data showing that in vitro fertilization rate was also reduced. If the zona pellucida was removed prior to in vitro fertilization, fertility was normal, demonstrating that zona pellucida penetration was defective, a step requiring acrosomal exocytosis. Therefore, complexin-I-deficient sperm are subfertile due to faulty zona pellucida penetration.  相似文献   

15.
Characterization of NADPH oxidase 5 in equine testis and spermatozoa   总被引:2,自引:0,他引:2  
Reactive oxygen species (ROS) play an important role in normal sperm function, and spermatozoa possess specific mechanisms for ROS generation via an NAD(P)H-dependent oxidase. The aim of this study was to identify the presence of an NADPH oxidase 5 (NOX5) in equine testis and spermatozoa. The mRNA of NOX5 was expressed in equine testis as detected by northern blot probed with human NOX5 cDNA and by RT-PCR. Immunoblotting with affinity purified alpha-NOX5 revealed one major protein in equine testis and other tissues. Immunolocalization of NOX5 showed labeling over the rostral sperm head with some labeling in the equatorial and post-acrosomal regions. In the testis, there was abundant staining in the adluminal region of the seminiferous tubules associated with round and elongating spermatids. The RT-PCR and sequence analysis revealed a high homology with human NOX5. This study demonstrates that NOX5 is present in equine spermatozoa and testes and therefore represents a potential mechanism for ROS generation in equine spermatozoa.  相似文献   

16.
The acrosome reaction is a key event in fertilization. Current models for induction of the acrosome reaction incorporate a necessary influx of Ca(2+), which is mediated by agonist-induced gating of ion channels in the sperm plasma membrane. The difficulty of applying electrophysiological techniques to spermatozoa has severely hampered studies on the expression of functional ion channels in these cells. However, during the last few years, a combination of molecular and physiological techniques (applied to immature spermatogenic cells) has elucidated both the expression of Ca(2+) channels in male germ cells and their role in induction of the acrosome reaction. It now appears that a range of voltage-operated Ca(2+) channels, similar to those that occur in somatic cells, is expressed in spermatozoa. Male rodent germ cells express a low-voltage activated (T-type) channel that is regulated by membrane potential and provides the primary Ca(2+) influx mechanism in zona pellucida-stimulated spermatozoa. In human spermatozoa, similar channels are apparently expressed, but their function in induction of the acrosome reaction has yet to be established. A range of other, high voltage-activated channels also appear to be present in rodent and human spermatozoa, but their roles are not yet known. In this review, the structure and characteristics of voltage-operated Ca(2+) channels are outlined and the evidence for their expression and function in male germ cells is assembled and discussed.  相似文献   

17.
Several lines of evidence support the key role of estrogens in male fertility. Here, we investigate the regulation of the serine/threonine kinase Akt-1 in the frog (Rana esculenta) testis during the annual sexual cycle and, whether 17beta-estradiol (E2) exerts a role in the Akt-1 activity. Akt-1 has been shown to be the mediator of growth factor-dependent cell proliferation, survival, and metabolism in a variety of cell types. First, we demonstrate by immunohistochemistry, the presence of estrogen receptor-beta (ERbeta), and Akt-1 in the spermatogonia (SPG), spermatocytes (SPC), and spermatids (SPT). Western-blot analysis revealed that ERbeta isoform (molecular weight 55 kDa) was highly expressed in May (reproductive period) with respect to January and November (winter stasis); in parallel, Akt-1 (molecular weight 60 kDa) is highly phosphorylated (Ser-473) during the period of active spermatogenesis (May) compared with the winter stasis (January and November). In addition, in vitro experiments demonstrate that E2 treatment induces the activation of Akt-1, and this effect is counteracted by the anti-estrogen ICI 182-780. In conclusion, our data show that E2 induces Akt-1 phosphorylation (Ser-473) possibly via ERbeta in frog (R. esculenta) male germ cells.  相似文献   

18.
Growth and development of immature testis xenograft from various domestic mammals has been shown in mouse recipients; however, buffalo testis xenografts have not been reported to date. In this study, small fragments of testis tissue from 8-week-old buffalo calves were implanted subcutaneously onto the back of immunodeficient male mouse recipients, which were either castrated or left intact (non-castrated). The xenografts were retrieved and analyzed 12 and 24 weeks later. The grafted tissue survived and grew in both types of recipient with a significant increase in weight and seminiferous tubule diameter. Recovery of grafts from intact recipients 24 weeks post-grafting was significantly lower than that from the castrated recipients. Seminal vesicle indices and serum testosterone levels were lower in castrated recipients at both collection time points in comparison to the intact recipients and non-grafted intact mouse controls. Pachytene spermatocytes were the most advanced germ cells observed in grafts recovered from castrated recipients 24 weeks post-grafting. Complete spermatogenesis, as indicated by the presence of elongated spermatids, was present only in grafts from intact recipients collected 24 weeks post-grafting. However, significant number of germ cells with DNA damage was also detected in these grafts as indicated by TUNEL assay. The complete germ cell differentiation in xenografts from intact recipients may be attributed to efficient Sertoli cell maturation. These results suggest that germ cell differentiation in buffalo testis xenograft can be completed by altering the recipient gonadal status.  相似文献   

19.
At the avian body temperature of 40 degrees C, intact fowl spermatozoa require Ca(2+) for the initiation of motility and a combination of both Ca(2+) and homogenized inner perivitelline layer (IPVL) together to induce the acrosome reaction. Within the range of 1-100 micromol/l, neither PD 150606 (a Ca(2+)-dependent calpain inhibitor) nor Y-27632 (an inhibitor of Ca(2+)-dependent Rho-kinase) were able to inhibit the acrosome reaction induced by the presence of Ca(2+) and IPVL. However, PD 150606, although not Y-27632, was able to inhibit sperm motility initiated by Ca(2+), as well as motility initiated by calyculin A -- a specific inhibitor of protein phosphatases, which also initiates sperm motility at 40 degrees C. The addition of PD 150606 did not reduce the ATP concentrations of intact spermatozoa, nor the motility of demembranated spermatozoa. Immunoblot analysis of sperm extract using a polyclonal antibody against calpain 12 revealed a cross-reacting protein of approximately 80 kDa. These results suggest that Rho-kinase is not involved in the regulation of the acrosome reaction or of motility in fowl spermatozoa. In contrast, calpain appears to be involved in the regulation of flagellar movement, but not izn that of the acrosome reaction. Furthermore, it seems that endogenous calpain is present in the cytoplasmic matrix and/or the plasma membrane, but not retained in the axoneme and/or accessory cytoskeletal components.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号